Model PredictiveControl Tool box

For Use with MATLAB ${ }^{\text {B }}$ Manfred Morari
N. Lawrence Ricker

Computation

Visualization

Programming

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com suggest@mathworks.com bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
Phone
508-647-7001
The MathWorks, Inc.
Fax

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the M athWorks Web site.
Model PredictiveControl Tool box User's Guide © COPYRIGHT 1995-1998 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial "computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: J anuary 1995 First printing
October 1998 (Online only)

Preface

Tutorial

1

Introduction 1-2
Target Audience for the MPC Toolbox 1-3
System Requirements 1-3
MPC Based on Step Response Models
2
Step Response Models 2-2
Model Identification 2-6
Unconstrained Model Predictive Control 2-11
Closed-Loop Analysis 2-18
Constrained Model Predictive Control 2-20
Application: Idle Speed Control 2-22
Process Description 2-22
Control Problem Formulation 2-22
Simulations 2-24
Application: Control of a Fluid Catalytic Cracking Unit 2-31
Process Description 2-31
Control Problem Formulation 2-33
Simulations 2-34
Step Response M odel 2-34
Associated Variables 2-36
Unconstrained Control Law 2-36
Constrained Control Law 2-36
MPC Based on State-Space Models
3
State-Space Models 3-2
Mod Format 3-3
SISO Continuous-Time Transfer Function to Mod Format 3-3
SISO Discrete-Time Transfer Function to Mod Format 3-6
MIMO Transfer Function Description to Mod F ormat 3-7
Continuous or Discrete State-Space to M od F ormat 3-9
Identification Tool box ("Theta") F ormat to Mod Format 3-9
Combination of Models in Mod Format 3-10
Converting Mod Format to Other Model Formats 3-10
Unconstrained MPC Using State-Space Models 3-12
State-Space MPC with Constraints 3-20
Application: Paper Machine Headbox Control 3-26
MPC Design Based on Nominal Linear Model 3-27
MPC of Nonlinear Plant 3-38
Command Reference
4
Commands Grouped by Function 4-2
Index

Acknow ledgments

The tool box was developed in cooperation with: Douglas B. Raven and Alex Zheng

The contributions of the following people are acknowledged: Yaman Arkun, Nikolaos Bekiaris, Richard D. Braatz, Marc S. Gelormino, Evelio Hernandez, Tyler R. Hol comb, Iftikhar Huq, Sameer M. J alnapurkar, J ay H. Lee, Y usha Liu, Simone L. Oliveira, Argimiro R. Secchi, and Shwu-Yien Yang

We would like to thank Liz Callanan, Jim Tung and Wes Wang from the MathWorks for assisting us with the project, and Patricia New who did such an excellent job putting the manuscript into LATEX.

About the Authors

Manfred Morari

Manfred M orari received his diploma from ETH Zurich in 1974 and his Ph.D. from the University of Minnesota in 1977, both in chemical engineering. Currently he is the McCollum-Corcoran Professor and Executive Officer for Control and Dynamical Systems at the California Institute of Technology. Morari's research interests are in the areas of process control and design. In recognition of his numerous contributions, he has received the Donald P. Eckman Award of the Automatic Control Council, the Allan P. Colburn Award of the AIChE, the Curtis W. McGraw Research Award of the ASEE, was a Case Visiting Scholar, the Gulf Visiting Professor at Carnegie Mellon University and was recently elected to the National Academy of Engineering. Dr. Morari has held appointments with Exxon R\&E and ICI and has consulted internationally for a number of major corporations. He has coauthored one book on Robust Process Control with another on Model Predictive Control in preparation.

N. Law rence Ricker

Larry Ricker received his B.S. degree from the University of Michigan in 1970, and his M.S. and Ph.D. degrees from the University of California, Berkeley, in 1972/78. All are in Chemical Engineering. He is currently Professor of Chemical Engineering at theU niversity of Washington, Seattle. Dr. Ricker has over 80 publications in the general area of chemical plant design and operation. He has been active in M odel PredictiveControl research and teaching for more than a decade. F or example, he published one of the first nonproprietary studies of the application of MPC to an industrial process, and is currently involved in a large-scale MPC application involving more than 40 decision variables.

Tutorial

Introduction

The Model Predictive Control (MPC) Tool box is a collection of functions (commands) developed for the analysis and design of model predictive control (MPC) systems. Model predictive control was conceived in the 1970s primarily by industry. Its popularity steadily increased throughout the 1980s. At present, there is little doubt that it is the most widely used multivariable control algorithm in the chemical process industries and in other areas. While MPC is suitable for almost any kind of problem, it displays its main strength when applied to problems with:

- A large number of manipulated and controlled variables
- Constraints imposed on both the manipulated and controlled variables
- Changing control objectives and/or equipment (sensor/actuator) failure
- Time delays

Some of the popular names associated with model predictive control are Dynami c M atrix Control (DMC), IDCOM, model algorithmic control, etc. While these algorithms differ in certain details, the main ideas behind them are very similar. Indeed, in its basic unconstrained form MPC is closely related tolinear quadratic optimal control. In the constrained case, however, MPC leads to an optimization problem which is solved on-line in real time at each sampling interval. MPC takes full advantage of the power available in today's control computer hardware.

This software and the accompanying manual are not intended to teach the user the basic ideas behind MPC. Background material is available in standard textbooks like those authored by Seborg, E dgar and Mellichamp (1989) ${ }^{1}$, Deshpande and Ash (1988) ${ }^{2}$ and the monograph devoted solely to this topic authored by Morari and coworkers (M orari et al., 1994) ${ }^{3}$. This section provides a basic introduction to the main ideas behind MPC and the specific form of implementation chosen for this tool box. The al gorithms used here are consistent with those described in the monograph by Morari et al. I ndeed, the software is meant to accompany the monograph and vice versa. The routines included in the MPC Tool box fall into two basic categories: routines which use

1. D.E. Seborg, T.F. Edgar, D.A. Mellichamp; Process Dynamics and Control ; J ohnWiley \& Sons, 1989
2. P.B. Deshpande, R.H. Ash; Computer Process Control with Advanced Control Applications, 2nd ed., ISA, 1988
3. M. M orari, C.E. Garcia, J.H. Lee, D.M. Prett; M odel PredictiveControl ; Prentice Hall, 1994 (In the process of being written.)
a step response model description and routines which use a state-space model description. In addition, simple identification tools are provided for identifying step response models from plant data. Finally, there are also various conversion routines which convert between different model formats and analysis routines which can aid in determining the stability of the unconstrained system, etc. All MPC Tool box commands have a built-in usage display. Any command called with no input arguments results in a brief description of the command line. For example, typing mpccon at the command line gives the following:
```
usage: Kmpc = mpccon(model,yut,uut,M P)
```

The following sections include several examples. They are available in the tutorial programs mpctut. m mpct utid. mpoctutst. mand mpct ut ss.m You can copy these demo files from the mpct ool s/mpcdenos source into a local directory and examine the effects of modifying some of the commands.

Target Audience for the MPC Toolbox

The package is intended for the classroom and for the practicing engineer. It can assist in communicating the concepts of MPC to a student in an introductory control course. At the same time it is sophisticated enough to allow an engineer in industry to evaluate alternate control strategies in simulation studies.

System Requirements

The MPC Toolbox assumes the following operating system requirements:

- MATLAB ${ }^{\circledR}$ is running on your system.
- If nonlinear systems are to be simulated, Simulink ${ }^{\circledR}$ is required for the functions nl cmpc and nl mpcsim
- If the theta format from the System Identification Tool box is to be used to create models in the MPC mod format (using the MPC Toolbox function, th2mod), then the System Identification Tool box function pol yf or mand the Control System Tool box function append are required.

The MPC Toolbox analysis and simulation algorithms are numerically intensive and require approximately 1MB of memory, depending on the number of inputs and outputs. The available memory on your computer may limit the size of the systems handled by the MPC Tool box.

Note: there is a pack command in MATLAB that can help free memory space by compacting fragmented memory locations. F or reasonable response times, a computer with power equivalent to an 80386 machine is recommended unless only simple tutorial example problems are of interest.

MPC Based on Step Response Models

Step Response Models

Step response models are based on the following idea. Assume that the system is at rest. F or a linear time-invariant single-input single-output (SISO) system let the output change for a unit input change Δv be given by

$$
\left\{0, s_{1}, s_{2}, \ldots, s_{n}, s_{n}, \ldots\right\}
$$

Here we assumethat the system settles exactly after n steps. The step response $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ constitutes a complete model of the system, which allows us to compute the system output for any input sequence:

$$
y(k)=\sum_{i=1}^{n} s_{i} \Delta v(k-i)+s_{n} v(k-n-1)
$$

Step response models can beused for both stableand integrating processes. F or an integrating process it is assumed that the slope of the response remains constant after n steps, i.e.,

$$
s_{n}-s_{n-1}=s_{n+1}-s_{n}=s_{n+2}-s_{n+1}=\ldots
$$

For a multi-input multi-output (MIMO) process with n_{v} inputs and n_{y} outputs, one obtains a series of step response coefficient matrices

$$
s_{i}=\left[\begin{array}{cccc}
s_{1,1, i} & s_{1,2, i} & \ldots & s_{1, n_{v}, i} \\
s_{2,1, i} & & & \\
\vdots & & & \\
s_{n_{y}, 1, i} & s_{n_{y}, 2, i} & \ldots & s_{n_{y}, n_{v}, i}
\end{array}\right]
$$

where $\mathrm{s}_{l, \mathrm{~m}, \mathrm{i}}$ is the $\mathrm{i}^{\text {th }}$ step response coefficient relating the $\mathrm{m}^{\text {th }}$ input to the $l^{\text {th }}$ output.

The MPC Toolbox stores step response models in the following format:

$$
\text { plant }=\left[\begin{array}{cccc}
& S_{1} & & \\
& S_{2} & & \\
& \vdots & & \\
& S_{n} & & \\
\operatorname{nout}(1) & 0 & \cdots & 0 \\
\operatorname{nout}(2) & 0 & \cdots & 0 \\
\vdots & \vdots & & \\
\operatorname{nout}\left(n_{y}\right) & 0 & \cdots & 0 \\
n_{y} & 0 & \cdots & 0 \\
\operatorname{delt} 2 & 0 & \cdots & 0
\end{array}\right]_{\left(n \cdot n_{y}+n_{y}+2\right) \times n_{v}}
$$

where del t 2 is the sampling time and the vector nout indicates if a particular output is integrating or not:

$$
\begin{aligned}
& \text { nout }(i)=0 \text { if output } i \text { is integrating. } \\
& \text { nout }(i)=1 \text { if output } i \text { is stable. }
\end{aligned}
$$

The step response can be obtained directly from identification experiments, or generated from a continuous or discrete transfer function or state-space model. For example, if the discrete system description (sampling time $T=0.1$) is

$$
y(k)=-0.5 y(k-1)+v(k-3)
$$

then the transfer function is

$$
g(z)=\frac{z^{-3}}{1+0.5 z^{-1}}
$$

The following commands (see mpct ut . n) generate the step response model for this system and plot it:

```
num = 1;
den = [lll}0.5]
del t1 = 0.1;
del ay = 2;
g = pol y2tfd(num den, del t 1, del ay);
%Set up the nodel in tf format
tfinal = 1.6;
del t2 = del t1;
nout = 1;
pl ant = tfd2step(tfinal, del t2, nout,g);
% Cal cul ate the step response
pl otstep(pl ant) % Pl ot the step response
```


Alternatively, we could first generate a state-space description applying the command tf 2ss and then generate the step response with ss2st ep. In this case, we need to pad the numerator and denominator polynomials to account for the time delay.

```
num =[ lllll 0 num;
den = [den 0 0];
[phi,gam c, d] = tf 2ss(num den); % Convert to state-space
pl ant = ss2step(phi,gam, c, d,tfinal, del t1, del t2, nout);
% Cal cul ate step response
```

We can get some information on the contents of a matrix in the MPC Toolbox via the command mpci nfo. For our example, mpci nfo(plant) returns:

This is a matrix in MPC Step format.
sampling time $=0.1$
number of inputs $=1$
number of outputs $=1$
number of step response coefficients $=16$
All outputs are stable.

Model Identification

The identification routines available in the MPC Toolbox are designed for multi-input single-output (MISO) systems. Based on a historical record of the output $\mathrm{y}_{l}(\mathrm{k})$ and the inputs $\mathrm{v}_{1}(\mathrm{k}) ; \mathrm{v}_{2}(\mathrm{k}), \ldots, \mathrm{v}_{\mathrm{n}_{\mathrm{v}}}(\mathrm{k})$,

$$
\mathrm{yy}_{l}=\left[\begin{array}{c}
\mathrm{y}_{l}(1) \\
\mathrm{y}_{l}(2) \\
\mathrm{y}_{l}(3) \\
\vdots
\end{array}\right] \quad \mathrm{v}=\left[\begin{array}{cccc}
\mathrm{v}_{1}(1) & \mathrm{v}_{2}(1) & \ldots & \mathrm{v}_{\mathrm{n}_{v}}(1) \\
\mathrm{v}_{1}(2) & \mathrm{v}_{2}(2) & \ldots & \mathrm{v}_{\mathrm{n}_{v}}(2) \\
\mathrm{v}_{1}(3) & \mathrm{v}_{2}(3) & \ldots & \mathrm{v}_{\mathrm{n}_{v}}(3) \\
\vdots & \vdots & &
\end{array}\right]
$$

the step response coefficients

$$
\left[\begin{array}{cccc}
\mathrm{s}_{l, 1,1} & \mathrm{~s}_{l, 2,1} & \cdots & \mathrm{~s}_{l, \mathrm{n}_{\mathrm{v},}} \\
\mathrm{~s}_{l, 1,2} & \mathrm{~s}_{l, 2,2} & \cdots & \mathrm{~s}_{l, \mathrm{n}_{\mathrm{v}}, 2} \\
\vdots & & & \\
\mathrm{~s}_{l, 1, \mathrm{i}} & \mathrm{~s}_{l, 2, \mathrm{i}} & \cdots & \mathrm{~s}_{l, \mathrm{n}_{\mathrm{v}} \mathrm{i}} \\
\vdots & \vdots & & \\
\vdots
\end{array}\right]
$$

are estimated. For the estimation of the step response coefficients we write the SISO model in the form

$$
\Delta y(k)=\sum_{i=1}^{n} h_{i} \Delta v(k-i)
$$

where

$$
\Delta y(k)=y(k)-y(k-1)
$$

and

$$
h_{i}=s_{i}-s_{i-1}
$$

h_{i} are the impulse response coefficients. This model allows the designer to present all the input (v) and output $\left(y_{l}\right)$ information in deviation form, which is often desirable. If the particular output is integrating, then the model

$$
\Delta(\Delta \mathrm{y}(\mathrm{k}))=\sum_{\mathrm{i}=1}^{\mathrm{n}} \Delta \mathrm{~h}_{\mathrm{i}} \Delta \mathrm{v}(\mathrm{k}-\mathrm{i})
$$

where

$$
\begin{aligned}
& \Delta(\Delta y(k))=\Delta y(k)-\Delta y(k-1) \\
& \Delta h_{i}=h_{i}-h_{i-1}
\end{aligned}
$$

should be used to estimate Δh_{i}, and thus h_{i} and s_{i} are given by

$$
\begin{aligned}
h_{i} & =\sum_{\substack{k=1 \\
i}}^{i} \Delta h_{k} \\
s_{i} & =\sum_{j=1}^{i} h_{j}=\sum_{j=1} \sum_{k=1}^{j} \Delta h_{k}
\end{aligned}
$$

For parameter estimation it is usually recommended to scale all the variables such that they arethe same order of magnitude. This may be done via the M PC Tool box functions aut osc or scal. Then the data has to be arranged into the form

$$
Y=X \Theta
$$

where Y contains all the output information $(\Delta y(k)$ for stable and $\Delta(\Delta y(k))$ for integrating outputs) and X all the input information ($\Delta \mathrm{v}(\mathrm{k})$) appropriately arranged. Θ is a vector including all the parameters to be estimated (h_{i} for stable and Δh_{i} for integrating outputs). This rearrangement of the input and output information is handled by wrtreg. The parameters Θ can be estimated via multivariableleast squares regression (m r) or partial least squares (pl sr). Finally, the step response model is generated from the impulse response coefficients via i mp2step. The following example (seempct ut i d) illustrates this procedure.

Example:

```
% Load the i nput and output data. The i nput and output
% data are generated fromthe following transfer
% functions and randomzero-mean noi ses.
% TF frominput 1 to output 1: g11=5.72exp(-14s)/
% (60s+1)
% TF frominput 2 to output 1: g12=1. 52exp(-15s)/
% ( 25s+1)
% Sampl ing time of 7 minutes was used.
%
% l oad nl rdat
%
% Det ermine the standard devi ations for i nput data using
% aut osc.
[ ax, mx, st dx] =aut osc(x) ;
%
% Scale the input data by their standard devi ations onl y.
mx=0*m;
sx=scal ( x, mx, st dx);
%
%Put the i nput and output data in a formsuch that they
% can be used to determine the i mpul se response
%coefficients. }35\mathrm{ coefficients (n) are used.
n=35;
[ xreg, yr eg] =wrtr eg(sx, y, n);
%
% Determine the impulse response coefficients via nhr.
% By specifying pl ot opt=2, two pl ots-pl ot of predicted
% output and actual output, and pl ot of the output
%residual (or predi ction error)-are produced.
ni nput =2; pl ot opt =2;
[ thet a, yr es] =nh r(xreg, yreg, ni nput, pl ot opt );
```


\% Scale thet a based on the standard devi ations used in \% scaling the input.
thet $a=s c a l(t h e t a, ~ m x, ~ s t d x)$;
\%
\% Convert the impulse model to a step nodel to be used \% in MPC design.
\% Sampling time of 7 minutes was used in determining \%the impul se model.
\% Number of outputs (1 in this case) must be specified.
nout $=1$;
del $\mathrm{t}=7$;
model \ddagger mp2step(del t, nout , t het $a)$;
\%
\% PI ot the step response.
pl ot step(nodel)

Unconstrained Model Predictive Control

The MPC control law can be most easily derived by referring to the following figure.

For any assumed set of present and future control moves $\Delta u(k), \Delta u(k+1)$, $\ldots, \Delta u(k+m-1)$ the future behavior of the process outputs $y(k+1 \mid k)$, $y(k+2 \mid k), \ldots, y(k+p \mid k)$ can be predicted over a horizon p. Them present and future control moves ($\mathrm{m} \leq \mathrm{p}$) are computed to minimize a quadratic objective of the form

$$
\begin{aligned}
\min _{\Delta \mathrm{u}(\mathrm{k}) \ldots \Delta \mathrm{u}(\mathrm{k}+\mathrm{m}-1)} & \sum_{l=1}^{\mathrm{p}}\left\|\Gamma_{l}^{\mathrm{y}}([\mathrm{y}(\mathrm{k}+l \mid \mathrm{k})-\mathrm{r}(\mathrm{k}+l)])\right\|^{2} \\
& +\sum_{l=1}^{\mathrm{m}}\left\|\Gamma_{l}^{\mathrm{u}}[\Delta \mathrm{u}(\mathrm{k}+l-1)]\right\|^{2}
\end{aligned}
$$

Here Γ_{l}^{y} and Γ_{l}^{u} are weighting matrices to penalize particular components of y or u at certain future time intervals. $\mathrm{r}(\mathrm{k}+l)$ is the (possibly time-varying) vector of future reference values (setpoints). Though m control moves are cal culated, only the first one ($\Delta \mathrm{u}(\mathrm{k})$) is implemented. At the next sampling interval, new values of the measured output are obtained, the control horizon is shifted forward by one step, and the same computations are repeated. The resulting control law is referred to as "moving horizon" or "receding horizon."

The predicted process outputs $y(k+1 \mid k), \ldots, y(k+p \mid k)$ depend on the current measurement $y(k)$ and assumptions we make about the unmeasured disturbances and measurement noise affecting the outputs. The MPC Tool box assumes that the unmeasured disturbances for each output are steps passing through a first order lag with time constant tfilter ($2,:$)..1 F or rejecting measurement noise, the time constant of an exponential filter tfilter (1,:) can be specified by the user. (It can be shown that this procedure is optimal for white noise disturbances passed through an integrator and a first order lag, and white measurement noise). F or conventional Dynamic Matrix Control (DMC) the disturbance time constant is assumed to be zero
(tfilter(2,:) = zeros(1, ny)), i.e., the unmeasured disturbances have the form of steps, and the noise filter time constant is also set to zero
(tfilter(1,:) = zeros(1, ny)), i.e., there is no measurement noise filtering for doing the prediction.

Under the stated assumptions, it can be shown that a linear time-invariant feedback control law results

$$
\Delta u(k)=K_{M P C} E_{p}(k+1 \mid k)
$$

where $E_{p}(k+1 \mid k)$ is the vector of predicted future errors over the horizon p which would result if all present and future manipulated variable moves were equal to zero $\Delta u(k)=\Delta u(k+1)=\ldots=0$.
For open-loop stable plants, nominal stability of the closed-loop system depends only on $\mathrm{K}_{\text {MP }}$ c which in turn is affected by the horizon p, the number of moves m and the weighting matrices Γ_{l}^{y} and Γ_{l}^{u}. Noprecise conditions on m, $\mathrm{p}, \Gamma_{l}^{\mathrm{y}}$ and Γ_{l}^{u} exist which guarantee closed-loop stability. In general, decreasing m relative to p makes the control action less aggressive and tends to stabilize a system. For $p=1$, nominal stability of the closed-loop system is guaranteed for any finite m, and time-invariant input and output weights. More commonly, Γ_{l}^{u} is used as a tuning parameter. Increasing Γ_{l}^{u} always has the effect of making the control action less aggressive.

The noisefilter time constant filter ($1,:$) and the disturbancetime constant tfilter (2,:) do not affect closed-loop stability or the response of the system to setpoint changes or measured disturbances. They do, however, affect the robustness and the response to unmeasured disturbances.

1. See cmpc in the "Reference" section for details on how to specify tfilter.

Increasing the noisefilter time constant makes the system more robust and the unmeasured disturbance response more sluggish. Increasing the disturbance time constant increases the lead in the loop, making the control action somewhat more aggressive, and is recommended for disturbances which have a slow effect on the output.
All controllers designed with the MPC Tool box track steps asymptotically error-free (Type 1). If the unmeasured disturbance model or the system itself is integrating, ramps are also tracked error-free (Type 2).
Example: (see mpct ut st . m)

```
% PI ant transfer function: g=5. 72exp(-14s)/( 60s+1)
% Di sturbance transfer function: gd=1. 52exp(-15s)/
% (25s+1)
%
% Build the step response model s for a sampling period
% of 7.
del t 1=0;
del ay1=14;
num1=5.72;
den1=[60 1];
g=pol y2t f d(num1, den1, del t 1, del ay1);
tfinal =245;
del t2=7;
nout 1=1;
pl ant =t f d2step(tfi nal, del t 2, nout 1,g);
del ay2=15;
num2=1. 52;
den2=[25 1];
gd=pol y2tfd(num2, den2, del t1, del ay2);
del t2=7;
nout 2=1;
dpl ant =t f d2step(tfinal , del t 2, nout 2,gd) ;
%
% Cal cul ate the MPC controller gain matrix for
% No pl ant/model mismatch,
% Out put Wei ght=1, I nput Wei ght =0
% I nput Horizon=5, Output Horizon=20
model =pl ant ;
yut =1; unt =0;
```

$\mathrm{M}=5 ; \quad \mathrm{P}=20$;
Kmpc1=mpccon(nodel, ywt, unt, M P) ;
\%
\% Si mul ate and pl ot response for unmeasured and measured \% step di st urbance through dpl ant.
t end=245;
$r=[\quad]$; usat $=[$ tfilter $=[$; drodel =] ; dst ep=1;
[y1, u1] =mpcsi no pl ant, model , Kmpc1, tend, r, us at, t filter, . . dpl ant, dmodel, dstep) ; dnodel =dpl ant; \% measured di st ur bance [y2, u2] =mpcsi no pl ant , model , Kmpc1, tend, r, us at , t filter , . . dpl ant, dmodel, dstep);
pl ot al I ([y1, y2], [u1, u2], del t2) ; pause; \% Perfect rejection for measured di st urbance case.

Manipulated Variables

\%
\% Cal cul ate a new MPC controller gain matrix for \% No pl ant/ model mismat ch, \% Out put Wei ght $=1$, I nput Wei ght $=10$
\% I nput Horizon=5, Out put Horizon=20
model =pl ant;
yut $=1$; unt $=10$;
$\mathrm{M}=5$; $\mathrm{P}=20$;
mpc2=mpccon(model, yut, unt, M P) ;
\%
\% Si mul ate and pl ot response for unmeasured and measured \% step di sturbance through dpl ant.
t end=245;
$r=[$; usat $=[$; tfilter $=[$;
drodel =[]
dst ep=1;
[y3, u3] =mpcsi mpl ant, model , Kmpc2, tend, r, usat, t filter, . .
dpl ant, dmodel, dstep) ;
dmodel $=d p l$ ant ; \% reasured di st ur bance
[y4, u4] =mpcsi mpl ant, model , Kmpc2, tend, r, usat, tfilter, . . .
dpl ant, dmodel , dst ep) ;
pl ot al I ([y3, y4], [u3, u4], del t 2) ;
pause;

\%

\% Si mul ate and pl ot response for unmeasured $\%$ step di sturbance t hrough dpl ant wi th unt $=0$, \% with and without noi se filtering.
t end=245;
$r=[$]; usat $=[$]; dmodel $=[$];
tfilter $=[$;
dst ep=1;
[$\mathrm{y} 5, \mathrm{u} 5$] =mpcsi mpl ant, model , Kmpc1, tend, r, us at, tfilter, . . dpl ant, dmodel, dst ep) ;
tfilter =20; \% noi se filtering time constant $=20$ [$\mathrm{y} 6, \mathrm{u} 6]=$ mpcsi mpl ant, model , Kmpc1, tend, r, us at , t filter, . . dpl ant, dmodel, dstep) ; pl ot al I ([y5, y6], [u5, u6], del t2); pause;

\%

\% Si mul ate and pl ot response for unmeasured \% step di sturbance through dpl ant with unt $=0$, \% with and without unmeasured di sturbance time constant \% bei ng specified.
t end=245;
$r=\{$]; usat $=[$]; drodel $=[$];
tfilter $=[$;
dst ep=1;
[y7, u7] =mpcsi mpl ant, model , Kmpc1, tend, r, usat, t filter, . . . dpl ant, dmodel, dstep) ;
tfilter =[0; 25]; \% unmeasured di stur bance time constant =25 [y8, u8] =mpcsi mpl ant, model , Kmpc1, t end, r, usat, t filter, ... dpl ant, drodel, dstep) ;
pl ot al I ([y7, y8], [u7, u8], del t2) ;
pause;

Closed-Loop Analysis

A part from simulation, other tools are available in the MPC Tool box to analyze the stability and performance of a closed-loop system. We can obtain the state-space description of the closed-loop system with the command mpcal and then determine the pole locations with smpcpol e.

Example: (mpct utst.n)

```
% Construct a cl osed-I oop systemfor no di sturbances
% and unt = 0. Determine the pol es of the system
cl mod = mpccl (pl ant, nodel , Kmpc1);
pol es = smpcpol e(cl mod);
maxpol e = max(pol es)
Result is: n⿴xpol e = 1.0
```

The closed-loop system is stable if all the poles are inside or on the unit-circle. Furthermore we can examinethe frequency response of the closed-loop system. For multivariable systems, singular values as a function of frequency can be obtained using svdfrsp.

Example: (mpctut st. m)

```
% Cal cul ate and pl ot the frequency response of the
% sensitivity and compl ementary sensitivity functions.
freq = [ - 3, 0, 30];
ny = 1;
in = [1: ny]; %input is r for comp. sensitivity
out = [1: ny]; % out put is yp for comp. sensitivity
[frsp, eyefrsp] = mod2frsp(cl mod,freq, out,in);
pl otfrsp(eyefrsp); % sensitivity
pause;
pl otfrsp(frsp); % compl ementary sensitivity
pause; % Magnitude = 1 for all frequenci es chosen.
```


Constrained Model Predictive Control

The control action can also be computed subject to hard constraints on the manipulated variables and the outputs.

Manipulated variable constraints:

$$
\mathrm{u}_{\min }(l) \leq \mathrm{u}(\mathrm{k}+l) \leq \mathrm{u}_{\max }(l)
$$

Manipulated variable rate constraints:

$$
|\Delta \mathrm{u}(\mathrm{k}+l)| \leq \Delta \mathrm{u}_{\max }(l)
$$

Output variable constraints:

$$
\mathrm{y}_{\min }(l) \leq \mathrm{y}(\mathrm{k}+\| \mathrm{k}) \leq \mathrm{y}_{\max }(l)
$$

When hard constraints of this form are imposed, a quadratic program has to be solved at each time step to determine the control action and the resulting control law is generally nonlinear. The performance of such a control system has to be evaluated via simulation.

Example: (mpctut st.m)

\% Si mul ate and pl ot response for unmeasured step
\% di st urbance through dpl ant with and wi thout
\% input constraints.
\% No pl ant/model mismat ch,
\% Out put Wei ght $=1$, I nput Wei ght $=0$
$\%$ I nput Horizon $=5$, Output Horizon $=20$
$\% \mathrm{M}$ ni mum Constraint on Input $=-0.4$
\% Maxi mum Constraint on Input = inf
\% Del ta Constraint on Input $=0.1$
model $=\mathrm{pl}$ ant ;
yut = 1; unt $=0$;
$\mathrm{M}=5 ; \quad \mathrm{P}=20$;
tend = 245;
$r=0 ;$
ulim=[];
ylim=[]; tfilter = []; dmodel = [];
dstep = 1;
[y9, u9] $=$ cmpc (pl ant, nodel, yut, unt, M P, tend, r, ...
ulimylimtfilter, dpl ant, dmodel, dstep) ;
ulim=[- 0. 4, inf, 0.1]; \%impose constraints
[y10, u10] $=c \operatorname{mpc}(p l a n t$, nodel , yut, unt, M P, tend, r, \ldots ulimylimtfilter, dpl ant, dmodel, dstep) ; pl ot al I ([y9, y10], [u9, u10], del t2);

Application: Idle Speed Control

Process Description

An idle speed control ${ }^{2}$ system should maintain the desired engine rpm with automatic transmission in neutral or drive. Despite sudden load changes due to the actions of air conditioning, power steering, etc., the control system should maintain smooth stable operation. Because of varying operating conditions and engine-to-engine variability inevitable in mass production, the system dynamics may change. The controller must be designed to be robust with respect to these changes. Two control inputs, bypass valve (or throttle) opening and spark advance, are used to maintain the engine rpm at a desired idle speed level. F or safe operation, spark advance should not change by more than 20 degrees. Also, spark advance should be at the design point at steady-state for fuel economy. Thus, spark advance is viewed both as a manipulated input and a controlled output.

Control Problem Formulation

Here we consider two different operating conditions (transmission in neutral and drive positions) and the models for the two plants aretaken from the paper by Hrovat and Bodenheimer. ${ }^{3}$ The goal is to design a model predictive controller such that the closed loop performance at both operating conditions is good in the presence of the input constraint specified above. There is no synthesis method available which systemati cally generates a controller design which guarantees robust performance (or even just robust stability) in the presence of constraints. Thus, we must rely on both design and simulation tools to determine achievable performance objectives when there are both constraints and robustness requirements. The tool box helps us toward this objective.
Consider the following system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1} \\
\mathrm{y}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{G}_{11} & \mathrm{G}_{21} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{G}_{\mathrm{d}} \\
0
\end{array}\right] \mathrm{w}
$$

2. More detail on the problem formulation can be found in the paper by Williams et al., "Idle Speed Control Design Using an H_{∞} Approach," Proceedings of American Control Conference, 1989, pages 1950-1956.
3. D. Hrovat and B. Bodenheimer, "Robust Automotive Idle Speed Control Design Based on μ-Synthesis," Proceedings of American Control Conference, 1993, pages 1778-1783.
where y_{1} is engine $r p m, y_{2}$ and u_{2} are spark advance, u_{1} is bypass valve, w is torque load (unmeasured disturbance), and $\mathrm{G}_{11}, \mathrm{G}_{21}$ and Gd are the corresponding transfer functions. After scaling, the constraints on spark advance become ± 0.7, i.e., $\left|u_{2}\right| \leq 0.7$.
Plant \#l corresponds to operation in drive at 800 rpm and a load of 30 Nm and the transfer functions are given by

$$
\begin{aligned}
& \mathrm{G}_{11}=\frac{9.62 \mathrm{e}^{-0.16 \mathrm{~s}}}{\mathrm{~s}^{2}+2.4 \mathrm{~s}+5.05} \\
& \mathrm{G}_{21}=\frac{15.9(\mathrm{~s}+3) \mathrm{e}^{-0.04 \mathrm{~s}}}{\mathrm{~s}^{2}+2.4 \mathrm{~s}+5.05} \\
& \mathrm{G}_{\mathrm{d}}=\frac{-19.1(\mathrm{~s}+3)}{\mathrm{s}^{2}+2.4 \mathrm{~s}+5.05}
\end{aligned}
$$

Plant \#2 corresponds to operation at 800 rpm in neutral with zero load and the transfer functions are given by

$$
\begin{aligned}
& \mathrm{G}_{11}=\frac{20.5 \mathrm{e}^{-0.16 \mathrm{~s}}}{\mathrm{~s}^{2}+2.2 \mathrm{~s}+12.8} \\
& \mathrm{G}_{21}=\frac{47.6(\mathrm{~s}+3.5) \mathrm{e}^{-0.04 \mathrm{~s}}}{\mathrm{~s}^{2}+2.2 \mathrm{~s}+12.8} \\
& \mathrm{G}_{\mathrm{d}}=\frac{-19.1(\mathrm{~s}+3.5)}{\mathrm{s}^{2}+2.2 \mathrm{~s}+12.8}
\end{aligned}
$$

The goal is to design a model predictive controller such that the closed-loop performance is good for plants \#1 and \#2 when subjected to an unmeasured torque load disturbance.

Simulations

Since the toolbox handles only discrete-time systems, the models are discretized using a sampling time of 0.1. We approximate each of the discrete transfer functions with 40 step response coefficients. The function cmpc is used to generate the controller and to simulate the closed-loop response because it determines optimal changes of the manipulated variables subject to constraints. For comparison (Simulation \#4), we also use the functions mpccon for controller design and mpcsi mfor simulating closed-loop responses. On-line computations are simpler, but the resulting controller is linear and the constraints are not handled in an optimal fashion. The following additional functions from the tool box are al so used: tf d2st ep and pl ot all. The MATLAB code for the following simulations can be found in the filei dl ect r. min the directory mpcdemos.

Figure 2-1 Responses to a Unit Torque Disturbance for Plant \#1 (no model/ plant mismatch)

Simulation \#1. No model/plant mismatch. The following parameters are used:

```
M = 10, P = inf, yut = [ 5 1], unt = [0.5 0.5],
tfilter = [ ]
```

The larger weight on the first output (engine rpm) is to emphasize that controlling engine rpm is more important than controlling spark advance. Figure 2-1 and Figure 2-2 show the closed-loop response for a unit step torque
load change. No model/plant mismatch is introduced, i.e., we use Plant \#l and Plant \#2 as the nominal model for simulating the closed loop response for Plant \#1 and Plant \#2, respectively.

As we can see, both controllers perform well for their respective plants. Because of the infinite output horizon, i.e., $\mathrm{P}=\mathrm{inf}$, nominal stability is guaranteed for both systems. In some sense, the performance observed in Figure 2-1 and Figure 2-2 is the best which can be expected, when the spark advance constraint is invoked and there is no model/plant mismatch. Obviously, if we want to control Plant \#l and Plant \#2 with the same controller the nominal performance for each plant will deteriorate.

Figure 2-2 Responses to a Unit Torque Disturbance for Plant \#2 (no model/ plant mismatch)

Figure 2-3 Responses to a Unit Torque Disturbance for Plant \#1 (nominal model = Plant \#2)

Simulation \#2. Model/plant mismatch. All parameters are kept the same as in Simulation \#l. Shown in Figure2-3 is the response to a unit torquedisturbance for Plant \#1 using Plant \#2 as the nominal model. Figure 2-4 depicts the response to a unit torque disturbance for Plant \#2 using Plant \#1 as the nominal model. As one can see, both systems are unstable. Therefore, the controllers must be detuned to improve robustness if one wants to control both plants with the same controller.

Figure 2-4 Responses to a Unit Torque Disturbance for Plant \#2 (nominal model $=$ Plant \#1)

Simulation \#3. The input weight is increased to [10 20] to improve robustness. All other parameters are kept the same as in Simulation \#1. Plant \#1 is used as the nominal model. The simulation results depicted in Figure2-5 and Figure 2-6 seem to indicate that with an input weight of [10 20] the controller stabilizes both plants. However, we must point out that the design procedure guarantees global asymptotic stability only for the nominal system, i.e., Plant \#1. Because of the input constraints, the system is nonlinear. The observed stability for Plant \#2 in Figure 2-6 should not be mistaken as an indication of global asymptotic stability.

Figure 2-5 Responses to a Unit Torque Disturbance for Plant \#1 (nominal model = Plant \#1)

Figure 2-6 Responses to a Unit Torque Disturbance for Plant \#2 (nominal model $=$ Plant \#1)

As expected, the nominal performance for both Plant \#1 and Plant \#2 has deteriorated when compared to the simulations shown in Figure 2-1 and Figure 2-2. A similar effect would be observed if we had detuned the controller which uses Plant \#2 as the nominal model.

Simulation \#4. The parameter values are the same as in Simulation \#3. Instead of using cmpc, we use mpccon and mpsi mfor simulating the closed loop responses. Figure 2-2 compares the responses for Plant \#1 using mpccon and mpcsi m and cmp. As we can see, for this example and these tuning parameters, the improvement obtained through the on-line optimization in cmpc is small. However, the difference could be large, especially for ill-conditioned systems and other tuning parameters. For example, by reducing the output horizon to $\mathrm{P}=80$ while keeping the other parameters the same, the responses for Plant \#1 found with mpccon and mpcsi mare significantly slower than those obtained with cmpc (Figure 2-8).

Figure 2-7 Comparison of Responses From cnpc, and mpccon and mpcsi mfor Plant \#1 $\mathrm{P}=\mathrm{inf}$

Figure 2-8 Comparison of Responses From cmpc, and mpccon and mpcsi mfor Plant \#1 ($\mathrm{P}=80$)

Application: Control of a Fluid Catalytic Cracking Unit

Process Description

Fluid Catalytic Cracking Units (FCCUs) are widely used in the petroleum refining industry to convert high boiling oil cuts (of low economic value) to lighter more valuable hydrocarbons including gasoline. Cracking refers to the catalyst enhanced thermal breakdown of high molecular weight hydrocarbons intolower molecular weight materials. A schematic of the FCCU studied ${ }^{4}$ is given in Figure 2-9. Fresh feed is contacted with hot catalyst at the base of the riser and travels rapidly up the riser where the cracking reactions occur. The desirable products of reaction are gaseous (lighter) hydrocarbons which are passed to a fractionator and subsequently to separation units for recovery and purification. The undesirable byproduct of cracking is coke which is deposited on the catalyst particles, reducing their activity. Catalyst coated with coke is transported to the regenerator section where the coke is burned off thereby restoring catalytic activity and raising catalyst temperature. The regenerated catalyst is then transported to the riser base where it is contacted with more fresh feed. Regenerated catalyst at the el evated temperature provides the heat required to vaporize the fresh feed as well as the energy required for the endothermic cracking reaction.

[^0]

Figure 2-9 Fluid Catalytic Cracking Unit Schematic
Product composition, and therefore the economic viability of the process, is determined by the cracking temperature. The bulk of the combustion air in the regenerator section is provided by the main air compressor which is operated at full capacity. Additional combustion air is provided by the lift air compressor, the throughput of which is adjustable by altering compressor speed. By maintaining excess flue gas oxygen concentration, it is possible to ensure essentially complete coke removal from the catalyst.

Control Problem Formulation

The open loop system is modeled as follows:

$$
y=G u+G_{d} d
$$

where

$$
\mathrm{u}=\left[\mathrm{V}_{\mathrm{fg}} \mathrm{~V}_{\mathrm{lift}}\right]^{\top} \quad \mathrm{y}=\left[\mathrm{C}_{\mathrm{O}_{2, \mathrm{sg}}} \mathrm{~T}_{\mathrm{r}} \Delta \mathrm{~F}_{\mathrm{la}}\right]^{\top} \quad \mathrm{d}=\left[\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3}\right]^{\top}
$$

G is the plant model and G_{d} is the disturbance model. The variables are:

- Controlled variables
- Cracking temperature - $\left(T_{r}\right)$
- Flue gas oxygen concentration - $\left(\mathrm{C}_{\mathrm{O}_{2,59}}\right)$
- Associated variable
- Lift Air Compressor Surge Indicator - ($\Delta \mathrm{F}_{\mathrm{Ia}}$)
- Manipulated variables
- Lift air compressor speed - $\left(\mathrm{V}_{\text {lift }}\right)$
- Flue gas valve opening - $\left(\mathrm{V}_{\mathrm{fg}}\right)$
- Modeled disturbances
- Variations in ambient temperature affect compressor throughput - $\left(d_{1}\right)$
- Fluctuations in heavy oil feed composition to the FCCU - $\left(\mathrm{d}_{2}\right)$
- Pressure upset in down stream units propagating back to the FCCU - (d_{3})

In addition to the controlled variables there are many process variables that need not be maintained at specific setpoints but which need to be within bounds for safety or economic reasons. These variables are called associated variables. For example, compressors must not surge during process upsets i.e., the suction flow rate must be greater than someminimum flow rate (surge flow rate).

The control objective is to maintain the controlled variables (cracking temperatureand flue gas oxygen concentration) at pre-determined setpoints in the presence of typical process disturbances while maintaining safe plant operation.

Simulations

State-space realizations of the plant and disturbance models are available in the MATLAB filefcc_dat. mat in the directory mpodemos. A MATLAB script detailing the simulations is also included (f cc_dem. m). The following table gives the parameters used for controller design and examination of the closed loop response:

Table 2-1 FCCU Simulation Parameters
\(\left.\begin{array}{l|l}\hline Simulation Time(s) \& \mathrm{t} end=2500

\hline \#Step Response Coefficients \& 60

\hline Process Sampling Time \& del \mathrm{t} 2=100

\hline Output Weights \& yut=\left[\begin{array}{ll}3 \& 3

0\end{array}\right]\end{array}\right]\)| unt $=\left[\begin{array}{ll}0 & 2\end{array}\right]$ | |
| :--- | :--- |
| Input Weights | $\mathrm{P}=12$ |
| Prediction Horizon (steps) | $\mathrm{M}=3$ |
| \#manipulated variable moves | $\mathrm{u}_{\mathrm{i}} \in\left[\begin{array}{ll}-1,1\end{array}\right], \mathrm{i}=1,2$ |
| input constraints | $\mathrm{y}_{\mathrm{i}} \in\left[\begin{array}{ll}-1,1], \mathrm{i}=1,2 \\ \mathrm{y}_{3} \mathrm{~S}-1 \text { (hard constraint) }\end{array}\right.$ |
| output constraints | |

Step Response Model

Figure 2-10A shows the plant open loop step response to a unit step in V_{fg}. Although the plant is stable the settling time is large (1 day). The time scale of interest for control purposes is on the order of one hour - which corresponds to the initial plant response, Figure 2-10B. F or time scales of one hour, the process can be approximated by an integrating system. In deriving the step response model, the plant is therefore assumed to be an integrating process.

Figure 2-10 Open Loop Step Response to $u=\left[\begin{array}{ll}1 & 0\end{array}\right]$

Figure 2-11 Unconstrained Closed Loop Response to $d=\left[\begin{array}{lll}0 & -0.5 & -0.75\end{array}\right]$

Associated Variables

As mentioned previously, associated variables need not be at any setpoint as long as they are within acceptable bounds. Deviations of associated variables from the nominal value do not appear in overall objective function to be minimized and the output weight corresponding to the associated variable is set to zero in Table 2-1.

Unconstrained Control Law

Figure 2-11 shows the closed loop response to a disturbance $\mathrm{d}=[0-0.5-0.75]$ at $\mathrm{t}=0$. The controller gain matrix is derived using mpcon and the closed loop response is examined using mpcsi m Note the following:

- At the first time step ($\mathrm{t}=100 \mathrm{~s}$) the controlled variables are outside their allowed limits. The onset of the disturbance at $t=0$ is unknown to the controller at $\mathrm{t}=0$ since there is no disturbance feedforward loop. Thus from $t=0$ to $t=100$ s there is no control action and the process response is the open loop response with no control action. Only after $t=100$ s is corrective action implemented.
- At $t=200$ s ($2^{\text {nd }}$ time step) riser temperature is outside the allowed limits.
- The lift air compressor surges during the interval $200 \mathrm{~s} \leq \mathrm{t} \leq 800 \mathrm{~s}$ which is unacceptable. Compressor surging will result in undesirable vibrations in the compressor leading to rapid wear and tear.

Constrained Control Law

It is clear that the unconstrained control law generated using mposi mis physi cally unacceptablesince hard output constraints areviolated. Figure 2-12 shows the closed loop response of the nominal plant to the same disturbance taking process constraints explicitly into account. The closed loop response is determined using the command cmpc.

Figure 2-12 Constrained Closed Loop Response to $\mathbf{d}=\left[\begin{array}{llll}0 & -0.5 & -0.75\end{array}\right]$
The output limit vector is:

$$
\text { ylim }=\left[\begin{array}{llllll}
-1 & -1 & -1 & 1 & 1 & \operatorname{Inf} \\
-1 & -1 & -1 & 1 & 1 & \operatorname{Inf} \\
-\operatorname{Inf} & - \text { Inf } & - \text { Inf } & \text { Inf } & \text { Inf } & \text { Inf }
\end{array}\right]
$$

Note the following:

- At the first time step ($\mathrm{t}=100 \mathrm{~s}$) the controlled variables are outside their allowed limits. In fact the outputs are identical to the outputs for the unconstrained case at $t=100 \mathrm{~s}$. This should be expected as there is no control action from $t=0$ to $t=100 \mathrm{~s}$ for both constrained and unconstrained designs.
- At $t=200$ s (2 $2^{\text {nd }}$ time step) riser temperature $\left(y_{2}\right)$ is still outside the allowed limits. This is because the constrained QP solved at $t=100$ s assumes that disturbances are constant for $\mathrm{t}>100 \mathrm{~s}$ which is not the case for this process. Thus while the manipulated variable movemade at $t=100$ s ensures that the predicted $y_{2}=1$ at $t=200 \mathrm{~s}$, the actual output at $\mathrm{t}=200$ s exceeds one.
- The lift air compressor does not surge during the disturbance transient, Figure 2-13.

The constrained control law therefore ensures safe operation while rejecting process disturbances. If no constraints are violated, mpccon and mpcsi mand cmpc will give identical closed loop responses. Note that the disturbance $d=[0-0.5-0.75]$ was specifically chosen to illustrate the possibility of constraint violations during disturbance transient periods.

Figure 2-13 Comparison of Constrained and Unconstrained Response of $\Delta \mathrm{F}_{\mathrm{la}}$ to $\mathrm{d}=\left[\begin{array}{lll}0-0.5-0.75\end{array}\right]$

MPC Based on State-Space M odels

State-Space Models

Consider the process shown in the above block diagram. The general discrete-time linear time invariant (LTI) state-space representation used in the MPC Toolbox is:

$$
\begin{aligned}
x(k+1) & =\Phi x(k)+\Gamma_{u} u(k)+\Gamma_{d} d(k)+\Gamma_{w} w(k) \\
y(k) & =\bar{y}(k)+z(k) \\
& =C x(k)+D_{u} u(k)+D_{d} d(k)+D_{w} w(k)+z(k)
\end{aligned}
$$

where x is a vector of n state variables, u represents the n_{u} manipulated variables, d represents n_{d} measured but freel y-varying inputs (i.e., measured disturbances), w represents n_{w} unmeasured disturbances, y is a vector of n_{y} plant outputs, z is measurement noise, and $\Phi, \Gamma_{\mathrm{u}}$, etc., are constant matrices of appropriate size. The variable $\bar{y}(\mathrm{k})$ represents the plant output before the addition of measurement noise. Define:

$$
\begin{aligned}
& \Gamma=\left[\begin{array}{lll}
\Gamma_{\mathrm{u}} & \Gamma_{\mathrm{d}} & \Gamma_{\mathrm{w}}
\end{array}\right] \\
& \mathrm{D}=\left[\begin{array}{lll}
\mathrm{D}_{\mathrm{u}} & \mathrm{D}_{\mathrm{d}} & \mathrm{D}_{\mathrm{w}}
\end{array}\right]
\end{aligned}
$$

In many applications, all outputs are measured. In some cases, however, one has $n_{y m}$ measured and $n_{y u}$ unmeasured outputs in y, where $n_{y m}+n_{y u}=n_{y}$. If so, the MPC Toolbox assumes that the y vector and the C and D matrices are arranged such that the measured outputs come first, followed by the unmeasured outputs.

Mod Format

The MPC Tool box works with state-space models in a special format, called the \bmod format. The mod format is a single matrix that contains the state-space Φ, Γ, C, and D matrices plus some additional information (see mod format in the "Command Reference" chapter for details). The MPC Tool box includes a number of commands that make it easy to generate models in the mod format. The following sections illustrate the use of these commands.

SISO Continuous-Time Transfer Function to Mod Format

The MPC Toolbox uses a format called thetf format. Let the continuous-time transfer function be

$$
G(s)=\frac{b_{0} s^{n}+b_{1} s^{n-1}+\ldots+b_{n}}{a_{0} s^{n}+a_{1} s^{n-1}+\ldots+a_{n}} e^{-T_{d} s}
$$

where T_{d} is the time delay. The $t f$ format is a matrix consisting of three rows:
row 1: The n coefficients of the numerator polynomial, b_{0} to b_{n}.
row 2: The n coefficients of the denominator polynomial, a_{0} to a_{n}.
row 3: column 1: The sampling period. This must be zero for a continuous system. (It must be positive for discrete transfer functions - see next section).
column 2: The time delay in time units. It must satisfy $\mathrm{Td} \geq 0$.

Thet f matrix will always have at least two columns, since that is the minimum width of the third row.

You can either define a model in thetf format directly or use the command pol y2tfd. The general form of this command is

```
g = pol y2tfd(num den, del t, del ay)
```

For example, consider a SISO system modeled by the transfer function

$$
G(s)=\frac{-13.6 s+1}{54.3 s^{2}+113.5 s+1} e^{-5.3 s}
$$

To create the tf format directly you could use the command

$$
\mathrm{G}=[0-13.61 ; 54.3 \text { 113. } 51 ; 0 \text { 5. } 3 \text { 0 } 0 \text {]; }
$$

which defines a matrix consisting of three rows and three columns. Note that all rows must have the same number of columns so you must be careful to insert zeros where appropriate. The pol y2t fd command is more convenient since it does that for you automatically:

$$
\mathrm{G}=\text { pol } y 2 \mathrm{tfd}([-13.6 \text { 1],[} 54.3 \text { 113. } 5 \text { 1], 0, 5. 3); }
$$

Either command would define a variable Gin your workspace, containing the matrix

$\mathrm{G}=$		
0	-13.6000	1.0000
54.3000	113.5000	1.0000
0	5.3000	0

To convert this to the mod format, use the command tf d2mod, which has the form

```
model = tfd2mod(del t, ny, g1, g2, g3, ...,gN)
```

where:
del t The sampling period. tf d2nod will convert your continuous time transfer function(s) g1, ..., gN to discrete-time using this sampling period.
ny
is the number of output variables in the plant you are modeling.
$\mathrm{g} 1, \mathrm{~g} 2, \ldots, \mathrm{gN}$ A sequence of N transfer functions in the tf format, where $\mathrm{N} \geq 1$. tfd2mod assumes that these are the individual elements of a transfer-function matrix:

$$
\left[\begin{array}{cccc}
g_{1,1} & g_{1,2} & \ldots & g_{1, n_{u}} \\
g_{2,1} & g_{2,2} & \cdots & g_{2, n_{u}} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n_{y}, 1} & g_{n_{y}, 2} & \cdots & g_{n_{y},}, n_{u}
\end{array}\right]
$$

Thus N must bean integer multiple $\left(\mathrm{n}_{\mathrm{u}}\right)$ of the number of outputs, n_{y}. You supply the transfer functions in col umn-wise order. In other words, you first give the n_{y} transfer functions for input $1\left(g_{1,1}\right.$ to $\left.g_{n_{y}, 1}\right)$, then the n_{y} transfer functions for input $2\left(g_{1,2}\right.$ to $\left.g_{n_{y}, 2}\right)$, etc.

Suppose you want to convert the SISO model defined above to the mod format with a sampling period of 2.1 time units. The appropriate command would be
$\bmod =\mathrm{tf} \mathrm{d} 2 \bmod (2.1,1, \mathrm{G})$;
This would define a variable called mod in your workspace that would contain the discrete-time state-space description of your system.

SISO Discrete-Time Transfer Function to Mod Format

Suppose you have a transfer function in discretetime format (in terms of the forward-shift operator, z):

$$
G(q)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{n} z^{-n}}{a_{0}+a_{1} q^{-1}+\ldots+a_{n} z^{-n} z^{-d}}
$$

where d is an integer (≥ 0) and represents the sampling periods of pure delay. The corresponding tf format is the same as for the continuous-time case except for the definition of the third row:
column 1 is the sampling period for which $G(z)$ was created. It must be positive (in contrast to the continuous-time case described above).
column 2 is the periods of pure del ay, d, which must be an integer ≥ 0. Contrast this to the continuous case, where the delay is given in time units.

As in the previous section, you can use pol y 2 f fd followed by ff d 2 mod to get such a transfer function in mod format. For example, the discrete-time representation of the SISO system considered in the previous section is

$$
G(z)=\frac{-0.1048+0.1215 z^{-1}+0.0033 z^{-2}}{1-0.9882 z^{-1}+0.0082 z^{-2}} z^{-3}
$$

If you had this to begin with, you could convert it to the mod format as follows:

```
G = pol y2tfd([-0.1048 0. 1215 0. 0033],[1 - 0. 9882 0.0082], 2. 1, 3);
mod = tfd2mod(2.1,1,G);
```

Note that both the pol y2t fd and tf d2nod commands specify the same sampling period (del $\mathrm{t}=2.1$). This would be the usual case, but you have the option of converting a discrete-time model in the tf format to a different sampling period in the mod format.

MIMO Transfer Function Description to Mod Format

Suppose you have a transfer-function matrix description of your system in the form

$$
\left[\begin{array}{cccc}
g_{1,1} & g_{1,2} & \cdots & g_{1, n_{u}} \\
g_{2,1} & g_{2,2} & \cdots & g_{2, n_{u}} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n_{y}, 1} & g_{n_{y}, 2} & \cdots & g_{n_{y},} n_{u}
\end{array}\right]
$$

where $g_{i, j}$ is the transfer function of the $i^{\text {th }}$ output with respect to the $j^{\text {th }}$ input. If all n_{y} outputs are measured and all n_{u} inputs are manipulated variables, the default mode of $t \mathrm{fd} 2 \mathrm{mod}$ will give you the correct mod format. For example, consider the 2-output, 3-input system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{ccc}
\frac{12.8 e^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 \mathrm{e}^{-3 \mathrm{~s}}}{21.0 \mathrm{~s}+1} & \frac{3.8 \mathrm{e}^{-8 \mathrm{~s}}}{14.9 \mathrm{~s}+1} \\
\frac{6.6 \mathrm{e}^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 \mathrm{e}^{-3 \mathrm{~s}}}{14.4 \mathrm{~s}+1} & \frac{4.9 \mathrm{e}^{-3 \mathrm{~s}}}{13.2 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s}) \\
\mathrm{u}_{3}(\mathrm{~s})
\end{array}\right]
$$

The following sequence of commands would convert this to the equivalent mod format with a sampling period of $\mathrm{T}=4$:

```
g11 = pol y2tfd(12. 8, [16.7 1],0, 1);
g21 = pol y2tfd(6.6,[10.9 1],0,7);
g12 = pol y2tfd(-18.9,[21.0 1],0,3);
g22 = pol y2tfd(-19.4,[14.4 1],0,3);
g13 = pol y2tfd(3.8,[14.9 1],0, 8);
g23 = pol y2tfd(4.9,[13.2 1],0,3);
pmod = tf d2mod(4, 2, g11,g21,g12,g22,g13,g23);
```

Suppose, however, that the third input were actually an unmeasured disturbance, i.e., the system were

$$
\left[\begin{array}{l}
y_{1} s \\
y_{2} s
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 s+1} & \frac{-18.9 e^{-3 s}}{21.0 s+1} \\
\frac{6.6 e^{-7 s}}{10.9 s+1} & \frac{-19.4 e^{-3 s}}{14.4 s+1}
\end{array}\right]\left[\begin{array}{l}
u_{1} s \\
u_{2} s
\end{array}\right]+\left[\begin{array}{c}
\frac{3.8 e^{-8 s}}{14.9 s+1} \\
\frac{4.9 e^{-3 s}}{13.2 s+1}
\end{array}\right] w(s)
$$

In this case you would need to override the default mode of tf d 2 nod by specifying the number of inputs in each of the three categories described at the beginning of this section, i.e., manipulated variables, measured disturbances, and unmeasured disturbances. This and other information about the system is contained in the first 7 columns of row 1 of the mod format, as follows:

column 1 T, the sampling period.

2 n, the number of states.
$3 n_{u}$, the number of manipulated variable inputs.
$4 n_{d}$, the number of measured disturbances.
$5 \mathrm{n}_{\mathrm{w}}$, the number of unmeasured disturbances.
$6 \mathrm{n}_{\mathrm{ym}}$, the number of measured outputs.
$7 \mathrm{n}_{\mathrm{yu}}$, the number of unmeasured outputs.
For example, if you had defined prod using the default mode of $t f d 2 \bmod$ as shown above, the contents of row 1 , columns 1 to 7 of prod would be:

41330020
You could override this to set $n_{u}=2$ and $n_{w}=1$ as follows:
prod (1,3) $=2$;
$\operatorname{prod}(1,5)=1$;

Note that in the original transfer function matrix description, the first n_{u} columns must be for the manipulated variables, the next n_{d} for the measured disturbances (if any), and the last n_{w} for the unmeasured disturbances (if any). Similarly, the first n_{ym} outputs must be measured and the last $\mathrm{n}_{\mathrm{yu}}(\geq 0)$ unmeasured.

Continuous or Discrete State-Space to Mod Format

If you have a continuous-time state-space model, you may convert it to mod format by first using the function c2dmp (conti nuous to discrete-time state-space), followed by ss2md(discrete-time state-space to mod format). Of course, if you are starting with a discrete-time state-space model you can skip the first step.

For example, suppose a, b, c, and d are matrices describing a continuous-time system. To convert to the mod format using a sampling period of $\mathrm{T}=1.5$, you could use the following commands:

```
[ phi, gam] = c2dmp(a, b, 1. 5);
mod = ss2mod( phi,gam c, d, 1. 5);
```

If your system is complicated, i.e., it contains disturbance inputs and/or unmeasured outputs, you will need to override the default mode of ss 2mod. See the "Command Reference" section for more details.

Identification Toolbox ("Theta") Format to Mod Format

The System Identification Tool box identifies discrete-time transfer-function models from input/output data. The result is a model in a special form called the theta format (see the System I dentification Tool box User's Guide for details). In general, each theta model describes the response of a single output to one or more inputs (MISO model).

The MPC Tool box function, th 2 mod , converts one or more such models to the mod format. Suppose, for example, that

[^1]Then the following command would provide the equivalent mod format with

```
n
    mod = th2mod(th1,th2);
```


Combination of Models in Mod Format

The functions addnød, addmd, addumd, appmod, par anød, and ser mod allow you to combine simple models in the mod format to generate more complex plant structures. F or example, addmed includes the effect of one or more measured disturbances in an existing model, as shown in the following schematic:

pnod gives the effect of one or more manipulated variables, $u(k)$, and optional unmeasured disturbance(s), w(k), on the output(s), $y(k)$. dmod gives the effect of the measured disturbance(s), $\mathrm{d}(\mathrm{k})$, on the same outputs. Once you have defined prod and dnod (e.g., starting from transfer functions as illustrated above), you can use the command addmal to generate the composite, model :

```
model = addm(pmod, dmod);
```

Please see Chapter 4, "Command Reference" for more details on the various model-building commands.

Converting Mod Format to Other Model Formats

The function mod2ss converts a model in the mod format to the standard di screte-time state-space format:

```
[ phi,gam c, d, minfo] = mod2ss(mod);
```

Here, phi, gam c, and d are the coefficient matrices of

$$
x(k+1)=\Phi x(k)+\Gamma u(k)
$$

$$
y(k)=C x(k)+D u(k)
$$

The vector min o contains the first 7 columns of thefirst row in mod. Thesection "MIMO Transfer Function Description to Mod Format" gives the significance of this information.

Once you have phi , gam c, and d, you can use d2cmp, ss2t f 2, and other functions to convert from di screte state-space to other model forms.

The function mod2st ep uses a model in the mod format to generate a stepresponse model in the step format as required by the functions mpccon, mpcsi m etc., discussed in Chapter 2, "MPC Based on Step Response Models". See the Chapter 4, "Command Reference" for details on the use of mod2st ep.

Unconstrained MPC Using State-Space Models

Once you have described your system by generating state-space models in the mod format you can use the commands:

smpccon	to calculate the unconstrained controller gain matrix.
smpcest	to design a state estimator (optional).
smpcsi m	to simulate the response of the closed-loop system to one or more specified inputs.
pl ot all	(or pl ot each) to plot the response(s).

In addition, you can analyze certain properties of the closed-loop system using the commands:

smpccl	to generate a model of the closed-loop system (plant plus controller).
smpcgai n	to calculate the closed-loop gain matrix.
smpcpol e	to calculate the closed-loop pol es.
mod2frsp	(and pl ot $f r s p$) to calculate and pl ot the closed-loop frequency response.
svdfrsp	to calculate the singular values of the frequency response.

Note: smpcgai n, smpcpol e and mod2frsp also work with open-loop models in the mod format.

Example: (see mpct ut ss. m)
The following example (mpct ut ss. m) illustrates the basic procedures. The example process has 2 measured outputs, 2 manipulated variables, and an unmeasured disturbance:

$$
\left[\begin{array}{l}
y_{1} s \\
y_{2} s
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 s+1} & \frac{-18.9 e^{-3 s}}{21.0 s+1} \\
\frac{6.6 e^{-7 s}}{10.9 \mathrm{~s}+1} & \frac{-19.4 e^{-3 s}}{14.4 s+1}
\end{array}\right]\left[\begin{array}{l}
u_{1} s \\
u_{2} s
\end{array}\right]+\left[\begin{array}{c}
\frac{3.8 e^{-8 s}}{14.9 s+1} \\
\frac{4.9 e^{-3 s}}{13.2 s+1}
\end{array}\right] w(s)
$$

We first define the model in the mod format. The following commands use a sampling period of $\mathrm{T}=2$ time units (chosen arbitrarily):

```
del t = 2;
ny = 2;
g11 = pol y2tfd(12. 8,[16.7 1],0, 1);
g21 = pol y2tfd(6.6,[10.9 1],0,7);
g12 = pol y2tfd(-18. 9,[21.0 1],0, 3);
g22 = pol y2tfd(-19.4,[14.4 1],0,3);
umod = tf d2mod(del t, ny, g11, g21, g12, g22);
% Defines the effect of u inputs
g13 = pol y2tfd(3.8,[14.9 1],0, 8);
g23 = pol y2tfd(4.9,[13.2 1],0,3);
dmod = tf d2mod(del t, ny, g13, g23);
% Defines the effect of w i nput
pmod = addumd(umod, dmod); % Conbi nes the two model s.
```

We now design an unconstrained MPC controller. The design parameters are essentially the same as for the functions based on step response models (see Chapter 2). In this case, start by choosing design parameters such that we get the perfect controller:

```
i mod = pmod; % assume perfect model ing
yut = [ ]; % default (unity) wei ghts on both outputs
unt = [ ]; % default (zero) wei ghts on both i nputs
P = 5; % predi cti on horizon
M = P; % control horizon
Ks = smpccon(i mod, yut, uut,M P);
```

We check the design by running a simulation for a step increase in the setpoint of output y_{1} :
tend=30; \%time period for simulation.
$r=[10] ; \%$ set poi nts for the two outputs.
[y, u] = smpcsi m(pnod, i mod, Ks, tend, r);
pl ot all ($y, u, d e l t)$
Note that there is no model error since we used the same model to represent the plant (pmod) as that used to design the controller (i mod). The results are:

Note that we get perfect tracking of the specified setpoint change ($y_{1}=1$, $y_{2}=0$), but the manipulated variables are ringing. Y ou could have anticipated this by calculating the poles of the controller:
[cl mod, crod] $=\operatorname{smpccl}($ prod, i mod, Ks) ;
smpcpol e(crod)
The result shows that one of the poles is at -0.9487 and another is at -0.9223 . In general, such negative-real poles cause ringing.

One way to minimize ringing is to make the prediction horizon significantly larger than the control horizon:

```
P = 10;
M = 3;
Ks = smpccon(i mod, yut, uut,M P);
[y,u] = smpcsi m(pmod, i mod, Ks,tend,r);
pl ot al l ( y,u, del t)
```

This results in the following improved responses:

Another (often more effective) way is to use blocking. In the case of blocking, each element of the vector M indicates the number of steps over which $\Delta u=0$ during the optimization. For example, $M=[23]$ indicates that $u(k+1)=u(k)$ or $\Delta u(k+1)=0$ and $u(k+4)=u(k+3)=u(k+2)($ or $\Delta u(k+3)=\Delta u(k+4)=0)$:

```
M = [2 3 4]; % Defines 3 bl ocks of control moves
Ks = smpccon(i mod, yut, unt,M P);
[ y,u] = smpcsi m(pnod, i mod, Ks, tend,r);
pl ot all(y,u, del t)
pause
```

This completely eliminates the ringing, as shown in the following responses, at the expense of a more sluggish servo response and a larger disturbance in y_{2}.

A third approach is to increase the weights on the manipulated variables:

```
unt = [1 1]; %increase input wei ghting
P = 5; % origi nal predi cti on horizon
M = P; % original control horizon
Ks = smpccon(i mod, yut, unt,M P);
[y,u] = smpcsi m(pnod,i mod, Ks,tend,r);
pl otall(y,u, del t)
```

for which the response is:

In general, you must choose the horizons and weights by trial-and-error, using simulations to judge their effectiveness.

The servo-response of the last controller looks good. Let's see how it responds to a unit-step in the unmeasured disturbance, $\mathrm{w}(\mathrm{k})$:
ulim = []; \% default (no) constraints on u variables.
Kest $=[\quad] ; \%$ def ault (DMC) state esti mator.
$r=[00] ;$ Both output setpoints at zero.
z = []; \% default (zero) measurement noi se.
v = []; \% def aul t (zero) measured di sturbances.
$\mathrm{w}=[1]$; \% unit-step in unmeasured di sturbance.
[y, u] = smpcsi m(prod, i mod, Ks, tend, r, ulim Kest, z, v, w) ;
pl ot all (y, u, del t)
pause

Note that both setpoints are zero. The resulting response is:

Theregulatory response has a rather long transient. Let's see if we can improve it by using a state estimator other than the default (DMC) estimator:
[Kest, neunod] = smpcest(i mod, [15 15],[3 3]);
Ks = smpccon(newnod, yut, uut, M P);
[$y, u]=$ smpcsi m(pmod, neumod, Ks, tend, r, ulim Kest, z, v, w) ; pl otall ($y, u, d e l t)$

See the detailed description of the smpcest function for a discussion of the estimator design parameters. The results show that the controller now compensates for the disturbance much more rapidly:

State-Space MPC with Constraints

The function scmpc handles problems with inequality constraints on the manipulated variables and/or outputs. The recommended procedure is to first use the tools described in the section section Unconstrained MPC Using State-Space M odels to find values of the prediction horizon, P, control horizon, M input and output weights, and a state-estimation strategy that work well for the unconstrained version of your problem. Then define the constraints and solve the problem using scmpc. The following example illustrates the use of scmpc.

Example: (see mpt ut ss. n)
We use the same example process as in the previous section, but usea sampling period of 1 and omit the unmeasured disturbance input:

```
T = 1;
g11 = pol y2tfd(12. 8,[ 16.7 1], 0, 1);
g21 = pol y2tfd(6.6,[10.9 1],0,7);
g12 = pol y2tfd(-18.9,[21.0 1], 0, 3);
g22 = pol y2tfd(-19. 4, [14.4 1], 0, 3);
i mod = tf d2mod( 2, T, g11, g21,g12,g22);
```

The following statements specify parameters required in both the constrained and unconstrained cases, and calculate the gain for the unconstrained controller.

```
nhor \(=10\); Prediction horizon.
yut = [ ]; \% Unity wei ghting on output tracking errors
\% (def aul t).
unt = [ ]; \% Zero wei ghting on man. variable noves
\% (def ault).
bl ks = [2 3 5]; \% Al lows 3 moves of nmi pul at ed variables.
K = [ ]; \% DMC-type state estimation (default).
Ks = smpccon(i mod, yut, unt, bl ks, nhor);
```

Let's first verify that the constrained and unconstrained solutions will be the same when the constraints are loose i.e. inactive. The following statements define upper and lower bounds on $u(k)$ at $-\infty$ and ∞, respectively, and bounds on $\Delta u(k)$ at 10 (both u_{1} and $\left.u_{2}\right) \cdot{ }^{1}$ Also, bounds on $y(k)$ are set at the default values of $\pm \infty$.
ulim=[-inf -inf inf inf 10 10];
ylim=[]; \% Default -- no limits on outputs.
For the simulation we will make a step change of 0.8 in the setpoint for y_{1}. We will also assume a perfect model, i.e., use the same model for the plant as was used to design the controller.

```
setpts = [0.8 0]; % Define the step in the set poi nt.
pl ant = i mod;
tend = 20; % Duration of the simul ati on
[y1, u1] = smpcsi m(pl ant, i mod, Ks, tend, set pt s, ul i m K);
[y,u] = scmpc( pl ant,i mod, yut, uut, bl ks, nhor,t end, . . .
    set pt s, ul imyl imK);
pl otalI([y y1],[u u1],T)
```

The above pl ot al I command plots the results from smpcsi mand scmpc on the same graph. Since the constraints were loose, there should be no difference. In the following plots, you can only distinguish two curves, i.e., the two simulations give the same values of y and u, as expected.

1. Finite bounds on Δu are required by scmpc. Here they are chosen large enough so that they have no effect.

Now let's add some constraints to the problem. Suppose we want the maximum value of y_{2} to be -0.1. In the previous case it goes slightly above zero (dashed line in the Outputs plot). The following statements define a hard upper limit of $y_{2}=-0.1$, starting at the 4 th step in the prediction horizon. This accounts for the minimum delay of 3 sampling periods before y_{2} can be affected by either u_{1} or u_{2}, i.e., it is important to leave y_{2} unconstrained for the first 3 steps in the prediction horizon. In this case, since the initial condition is $y_{2}=0$, it is impossi bleto make $y_{2} \leq-0.1$ prior to $t=4$. If you were to attempt to do so, you would get an error message stating that the problem is infeasible. N ote also that the upper bound on y_{2} supersedes the setpoint, which is still specified as zero. The controller thus maximizes the value of y_{2} at steady state.

```
ylim=[-inf -inf inf inf
        -inf -inf inf inf
        -inf -inf inf inf
        -inf -inf inf -0.1];
[y,u] = scmpc(pl ant,i mod, yut, unt,bl ks, nhor,tend, . . .
    setpts,ulimylim K);
```

The following plot shows that the constraints are satisfied for $t \geq 4$, as expected.

If you use a long prediction horizon with constraints, the calculations can be time-consuming. You can minimize this by turning off constraints that are far out in the prediction horizon. The following example defines bounds on y_{1} and y_{2}, then turns them off beyond the 4th point in the prediction horizon. The calculations are much faster than would be the case if only the first 4 rows of yl i mhad been used (try it). Also, since there is neither model error nor unmeasured disturbances, the solution satisfies all constraints for $t 4$ in any case. In general, output constraints must be chosen carefully to avoid infeasibilities and maximize the speed of the calculations.

$$
\begin{aligned}
& \text { ylim=[-inf -inf inf inf } \\
& \text {-inf -inf } 0.8 \text { inf } \\
& \text {-inf -inf inf inf } \\
& \text {-inf 0. } 10 \text { inf inf] } \\
& \text {-inf -inf inf inf } \\
& \text { \% Turns off remai ning bounds. }
\end{aligned}
$$

As a final example we impose bounds on the manipulated variables:
ulim=[-0.5-0.50.500.30.3
-inf -inf inf inf 0.3 0.3];
$[\mathrm{y}, \mathrm{u}]=\operatorname{scmpc}(\mathrm{pl}$ ant, i mod, yut, unt, bl ks, nhor, tend, \ldots. set pts, ul imylimK) ;
pl ot al $\mathrm{I}(\mathrm{y}, \mathrm{u}, \mathrm{T})$
Again, to save computer time the constraints apply only for the first block in the prediction horizon, i.e., the constraints are turned off for periods 2 through $P=10$. The following plot shows that the upper bound of $u_{2} \leq 0$ and $\Delta u_{1} \leq 0.3$ are the most restrictive. The former prevents y_{2} from coming back to the minimum allowed value of 0.1.

Application: Paper Machine Headbox Control

Abstract

Ying et al. (1992)² studied the control of composition and liquid level in a paper machine headbox, a schematic of which is shown in Figure 3-1. The process model is given by a set of ordinary differential equations (ODEs) in bilinear form. Using their nomenclature, the states are $x^{\top}=\left[\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2}\right]$, where H_{1} is the liquid level in the feed tank, H_{2} is that in the headbox, N_{1} is the consistency (percentage of pulp fibers in suspension) in the feed tank, and N_{2} is that in the headbox. All states except H_{1} are measured, i.e., the measured outputs arey ${ }^{\top}=\left[\mathrm{H}_{2} \mathrm{~N}_{1} \mathrm{~N}_{2}\right]$. The primary control objective is to hold H_{2} and N_{2} (y_{1} and y_{3}) at specified setpoints.

There are two manipulated variables: $u^{\top}=\left[G_{p} G_{w}\right]$, where G_{p} is the flowrate of stock entering the feed tank, and G_{w} is that of the recycled white water. There is a single measured disturbance: $\mathrm{v}=\left[\mathrm{N}_{\mathrm{p}}\right]$, the consistency of the stock entering the feed tank, and a single unmeasured disturbance: $\mathrm{d}=\left[\mathrm{N}_{\mathrm{w}}\right]$, the consistency of the white water. All variables are normalized such that they are zero at the nominal steady state, and variations about the steady-state are of the same order of magnitude. The process is open-loop stable.

Figure 3-1 Schematic of Paper Machine Headbox Control Problem

MPC Design Based on Nominal Linear Model

The standard MPC design methods require a linear model of the plant. We therefore linearize the bilinear model at the nominal steady-state condition ($x=0 ; u=0 ; v=0 ; d=0$). Since the model is simple, one can linearize it analytically to obtain:

$$
x_{m}=A x_{m}+B_{0} u+B_{v} v+B_{d} d_{m}
$$

where x_{m}, y_{m}, and d_{m} are the model states, outputs, and disturbances, respectively. The desired closed-loop response time is of the order of 10 minutes, so we choose a sampling period of $T_{s}=2$ minutes. The file pmlin. m in the directory mpodemos contains the code for all the computations in this section of the manual. The following commands define the linear model and plot the response of the outputs to a unit step in each manipulated variable:

Figure 3-2 Responses of Paper Machine Outputs to Unit Step in u_{1}
\% Matrices = of the Iinearized paper machine model
$A=[-1.93000 ; .394-.42600 ; 00.630 ; .82-.784$
. 413 -. 426];
$B=[1.274$ 1. $27400 ; 0000 ; 1.34-65.203$. 406; 0000$]$;
C = [$01000 ; 0010 ; 0001]$;
D $=$ zeros $(3,4)$;
\% Di scretize the linear model and save in mod form $\mathrm{dt}=2$;

Figure 3-3 Responses of Paper Machine Outputs to Unit Step in u_{2}

The step responses (Figure 3-2 and Figure 3-3) show that there are large interactions in the open-loop system. Adjustments in u_{1} and u_{2} have strong effects on both y_{1} and y_{3}. Also, the $u_{2} \rightarrow y_{3}$ step exhibits an inverse response. We begin by attempting a controller design for good response of both y_{1} and y_{3} :

```
\% Define controller parameters
P = 10; \% Prediction horizon
\(\mathrm{M}=3\); \% Control horizon
yut \(=[1,0,1]\); \% Equal wei ghting of \(y(1)\) and \(y(3)\),
\% no control of \(\mathrm{y}(2)\)
unt \(=0.6 *[11] ; \%\) Equal wei ghting of \(u(1)\) and \(u(2)\).
```



```
ylim=[ ]; \% No constraints on y
Kest = [ ]; \% Use default estimator
\% Si mul ation using scmpc -- no model error
prod=i mod; \% pl ant and internal model are identical
set pts = [lll 1000\(] ;\)
\% servo response to step in y(1) set poi nt
tend \(=30\); \% durat \(i\) on of si mul ation
[ \(\mathrm{y}, \mathrm{u}, \mathrm{ym}]=\mathrm{scmpc}(\) prod, i mod, yut, unt, M P, tend,.. .
    set pts, ulimylim Kest);
plotall (y, u, dt)
```

The prediction horizon of 10 sampling periods (20 minutes) extends well past the desired closed-loop response time. Preliminary trials suggested that longer horizons increased the computational load but provided no advantage in setpoint tracking. The use of $M<P$ is not required in this case, but helps to reduce the computational load and inhibit ringing of the manipulated variables. Note the equal penalties on setpoint tracking errors for y_{1} and y_{3} (yut variable), reflecting our desire to track both setpoints accurately. There is no penalty on y_{2}, since it does not havea setpoint. The listed unt penalties were determined by running several trials. Figure $3-4$ shows smooth control of y_{1} with the desired 10-minuter esponsetime, but there is a noticeabledisturbance in y_{3}.

Figure 3-4 Response of closed-loop system to unit step in y_{1} setpoint for equal output weighting. Output y_{2} is uncontrolled, and the y_{3} setpoint is zero

One could repeat the simulation for a step change in the y_{3} setpoint as follows:
set pts $=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$; \% servo response to step in $y(3)$ set poi nt [$y, u, y m]=s c m p c(p r o d$, i mod, yut, unt, M P, tend, . . .
set pts, ul i myl i m, Kest) ;
pl ot all (y, u, dt)

Normally, control of consistency (y_{3}) is more important than control of liquid level, y_{1}. We can achieve better control of y_{3} if we allow larger tracking errors in y_{1}. For example, an alternative controller design uses unequal weights on the controlled outputs:

```
yut = [0.2,0,1]; % Unequal wei ghting of y(1) and y(3),
% no control of y(2)
setpts = [1 0 0];
% servo response to step in y(1) set poi nt
[ y,u,ym] = scmpc(pmod, i mod, yut, unt, M P, t end, ...
    set pts,ul imylim Kest);
pl otal l (y,u,dt)
```

As shown in Figure 3-5, a y_{1} setpoint change causes a much smaller disturbance in y_{3} than before (compare with Figure 3-4). The disadvantage is that the response time of y_{1} has increased from about 8 to 25 minutes.
Similarly, a step change in the y_{3} setpoint would cause a larger disturbance in y_{1} than in the original design. Overall, however, the controller with unequal weighting gives better nominal performance and will be used as the basis for subsequent designs.

Figure 3-5 Response of closed-loop system to Unit step in y_{1} setpoint for unequal output weighting. Output y_{2} is uncontrolled, and the y_{3} setpoint is zero.

We now evaluate the response of the above controller to a unit step in the measured disturbance, v (i.e., feedforward control). The commands required for this are:

```
setpts = [lllll}0000]; % outpu
set poi nts z = [ ]; % measurement noi se
v = 1; % measured di stur bance
d = 0; % unmeasured di sturbance [ y,u,ym] =
scmpc(prod, i mod, yut, uut, M P, tend, . . .
    setpts,ul i myl i m, Kest, z, v, d);
pl ot all(y,u,dt)
```

As shown in Figure 3-6, both controlled outputs are held near their setpoints, with larger deviations in y_{1}, as expected.

Figure 3-6 Response of closed-loop system to unit step in measured disturbance, v. unequal output weighting with y_{1} and y_{3} setpoints at zero.

Finally, we check the response to a step in the unmeasured disturbance. The required commands are:
set pts = $\left.\begin{array}{lll}0 & 0 & 0\end{array}\right] ; \%$ out put set poi nts
$v=0$; \% measured di st ur bance
$\mathrm{d}=1$; \% unmeasured di st ur bance
$[\mathrm{y}, \mathrm{u}, \mathrm{ym}]=\operatorname{scmpc}(\mathrm{pmod}, \mathrm{i}$ mod, $\mathrm{ywt}, \mathrm{uut}, \mathrm{M}, \mathrm{P}, \mathrm{t}$ end,\ldots
set pts, ul imylim Kest, z, v, d) ;
plotall (y, u, dt)

As shown in Figure 3-7, the unmeasured disturbance causes significant deviations in both controlled outputs. In fact, the higher-priority output, y_{3}, exhibits the larger tracking error of the two controlled variables.

Figure 3-7 Response of closed-loop system (with default state estimator) to unit step in unmeasured disturbance, d. unequal output weighting with y_{1} and y_{3} setpoints at zero.

Theclosed-loop response to unmeasured disturbances can often beimproved by a change in the state estimator. In the previous trials, we were using the default estimator, which assumes that disturbances are independent, random steps at each output. In fact, the known unmeasured disturbance, d, has no effect on y_{1}, and its effects on y_{2} and y_{3} are approximately first order with time constants of 3 and 5 minutes, respectively. One way to exploit this knowledge is to specify an expected covariance for d and a measurement noi se covariance for y, then use the Kalman gain for the modeled disturbance characteristics.

Consider the following sequence of commands, leading to the responses shown in Figure 3-8:

Figure 3-8 Response of closed-loop system to unit step in unmeasured disturbance, d. with Kalman Estimator, unequal output weighting with y_{1} and y_{3} setpoints at zero.
\% Estimator design
Q = 30;
R = 1*eye(3);
Kest = smpcest (imod, Q, R);
\% Si mul ation using scmpc -- no model error set pts = [0 0 0]; \% servo response to step in yl set poi nt d = 1; \% unmeasured di stur bance
$[y, u, y m]=s c m p c(p m o d, i$ nod, y ut, unt, M P, tend,..
set pts, ul imyl im Kest, z, v, d) ;
pl otall ($y, u, d t$)

The resulting Kest matrix is:

```
Kest =
    0 00
    0. 0000-0.00000.0000
    0. }0000\mathrm{ 0.74460.0732
    -0.0000 0. 29850. }085
    0. 0000-0.00000.0000
    -0.0000 0.77770.2934
    0. }0000\mathrm{ 0. 29340. }197
```

We have specified equal measurement noise for each output (R is diagonal with a rank equal to the number of outputs, and equal elements on the diagonal). This makes the Kalman estimator give equal weight to each output measurement. ${ }^{3}$ The dimension of Qmust equal the number of elements in d (unity in this case). A relatively large value of $Q(i, i)$ signifies an important disturbance mode. In practice, the elements of Q and R are tuning parameters, and one adjusts the relative magnitudes to achieve the desired balance of fast disturbance rejection (usually promoted by making Q relatively large) and robustness.

For the chosen Q and R, and the disturbance model in i mod, the elements of column 1 of Kest (shown above) are essentially zero. Thus, the measurement of y_{1} provides no information regarding the effect of d on the process states. Output y_{2}, on the other hand, provides Iarge corrections to the state estimates. If it were not available, rejection of d would degrade. ${ }^{4}$

Figure 3-8 shows that although the revised estimator reduced the disturbance in y_{3}, it is still significant (compare to Figure 3-7). A key limiting factor is the use of a 2-minute sampling period. As shown in Figure 3-8, the controller does not respond to the disturbance until it is first detected at $t=2$ minutes. Y ou can verify that reducing the sampling period to 0.25 minutes (hol ding all other parameters constant) greatly reduces the disturbance in y_{3}. Such a change would al so speed up the setpoint tracking in the nominal case. It may cause robustness problems, however, so we defer further consideration of the sampling period to tests with the nonlinear plant (see next section).

This application is unusual in that the characteristics of the unmeasured disturbance are known. When this is not the case, the output disturbanceform
3. If a measurement were known to be inaccurate, its $R(i, i)$ value should be relatively large.
4. You can see how serious the degradation would be by setting $R(2,2)$ to a large value, e.g.,10000.
of the estimator simplifies the design procedure. It requires only a rough idea of the characteristictimes for the disturbances, and the signal-to-noiseratio for each output. For example, you can verify that the following design rejects the d disturbance almost as well as the optimal Kalman design:

```
% Al ternati ve estimator design -- output di sturbances
taus = [5 5 5];
si gnoi se =[ [10 10 10];
[Kest, newrod] = smpcest(i mod, taus, si gnoi se);
% Si mul ati on usi ng scmpc -- no model error
[ y,u,ym] = scmpc(pmod, newrod, yut, unt,M P, t end, . . .
    set pts,ulimylim Kest, z,v,d);
pl otall(y,u,dt)
```


MPC of Nonlinear Plant

We are now ready to test the control ler design on the real (nonlinear) plant. A special version of the scmpc function (called scmponl) is available for this purpose. It uses a nonlinear plant model in the S-function format required by Simulink. (See the Simulink documentation for more information on how to write such models.) The model of the paper machine is in the file pap_mach. m Simulations with Simulink involving nonlinear models usually take much longer (by an order of magnitude) than linear simulations of a plant of comparable complexity. This is especially likely if the plant model is in theform of an .M file, as is the case here. If such models are to be used extensively, it may be worthwhile to code them as a . mex file (see MATLAB documentation). To see how well the MPC design rejects the d disturbance of Figure 3-8, we could use the commands found in the file pm nonl . min the directory mpcdenos. The only differences between these commands and those for the original linear simulation are:

- We have defined the initial values of the plant state and manipulated variables ($x 0$ and $u 0$, respectively).
- A step size for numerical integration has been specified. The value of 0.05 minutes provides reasonable accuracy in this application. In general, one must choose the step size to fit the problem (or use a variable step-size integration method, as provided by Simulink).

You can verify that the results are nearly identical to those shown in Figure 3-8. In other words, the nonlinearities in the plant have caused negligible
performance degradation. Very similar results are also obtained for the setpoint change of Figure 3-4.

As the magnitude of the disturbance (or setpoint change) increases, nonlinear effects become significant. For example, Figure 3-9 is for a step in d of 7 units. If the plant were linear, the curves in Figure 3-9 would be the same shape as those in Figure 3-8, but scaled by a factor of 7 . Although this is approximately true, there are some qualitative differences. F or example, at $t=8$ minutes in Figure 3-9, y_{2} has gone below y_{1}, whereas in Figure $3-8, y_{2}>y_{1}$ at all times.

Figure 3-9 As for Figure 3-8, but With Nonlinear Plant, and Step in d of 7 Units

If d is increased to 8, control qual ity degrades dramatically and the maximum tracking error in y_{3} goes to about -10^{5} (not shown). This is caused by changes in the plant characteristics as it moves away from the nominal state (i.e., causing errors in the MPC's linear model).

Sensitivity to modeling error can often be reduced by detuning the controller. A common approach is to increasethe magnitudes of the unt parameters. When nonlinear effects are severe, however, it may be impossible for any time-invariant, linear controller to provide stable, offset-free performance. In that case, if the nonlinear effects are predictable, one might try MPC based on a nonlinear model (e.g., Gattu and Zafiriou, 1992). ${ }^{5}$ Scripts for this purpose can be devel oped using the functions in this tool box.

As a final test, let's repeat the simulation of Figure 3-8 with a controller sampling period of 0.25 minutes (recall that the original sampling period was 2 minutes). Results appear in Figure 3-10. Compared to Figure 3-8, which had no model error (i.e., linear plant), we reduced the disturbance in y_{3} by a factor of 3 . Thus, a reduction in sampling period may not lead to robustness problems, and should be tested more thoroughly. You can verify that it works well for other combinations of small disturbances and setpoint changes.

[^2]

Figure 3-10 As for Figure 3-8, $(\mathrm{d}=1)$ but With Nonlinear Plant, Sampling Period of 0.25 Minutes

Command Reference

Commands Grouped by Function

Identification	
aut osc	Automatically scales a matrix by its means and standard deviations.
i mp2st ep	Combines MISO impulse response models to form MIMO models in MPC step format.
mi r	Calculates MISO impulse response model via multi- variable linear regression.
pl sr	Calculates MISO impulse response model via partial least squares regression.
rescal	Converts scaled data back to its original form.
scal	Scales a matrix by specified means and standard deviations.
val i dnød	Validates a MISO impulse response model using new data.
wrt reg	Writes data matrices used for regression.

Plotting and Matrix Information

mpci nf o	Outputs matrix type and attributes of system representation.
pl ot al I	Plots outputs and inputs from a simulation run on one graph.
pl ot frsp	Plots the frequency response of a system as a Bode plot.
pl ot each	Makes separate plots of outputs and/or inputs from a simulation run.
pl ot step	Plots the coefficients of a model in MPC step form.

Model Conversions	
c2dmp	Converts state-space model from continuous time to discrete-time. (Equivalent to c2d in Control System Tool box)
cp2dp	Converts from a continuous to a discrete transfer function in poly format.
d 2 cmp	Converts state-space model from discrete-time to continuous time. (Equivalent to d2c in Control System Tool box)
mod2nod	Changes sampling period of a model in MPC mod format.
nod2ss	Converts a model in MPC mod format to a state-space model.
mod2st ep	Converts a model in MPC mod format to MPC step format.
pol y2tfd	Converts a transfer function in poly format to MPC tf format.
ss 2 mod	Converts a state-space model to M PC mod format.
ss2step	Converts a state-space model to MPC step format.
ss2tf 2	Converts state-space model to transfer function. (Equivalent toss2tf in Control System Toolbox)
tf 2 ssm	Converts transfer function to state-space model. (Equivalent totf 2 ss in Control System Toolbox)
$t f d 2 n o d$	Converts a model in MPC tf format to MPC mod format.
tf d2step	Converts a model in MPC tf format to MPC step format.
th2mod	Converts a model in theta format (System Identification Tool box) into MPC mod format.

Model Building - MPC mod format				
addmd	Adds one or more measured disturbances to a plant model.			
addmod	Combines two models such that the output of one adds to the input of the other.			
addund	Adds one or more unmeasured disturbances to a plant model.			
appmod	Appends two models in an unconnected, parallel structure.			
par amod	Puts two models in parallel such that they share a common output.			
ser mod	Puts two models in series.		Controller Design and Simulation - MPC step format	
:---	:---			
cmpc	Solves the quadratic programming problem to simulate performance of a closed-loop system with input and output constraints.			
mpccl	Creates a model in MPC mod format of a closed-loop system with an unconstrained MPC controller.			
mpccon	Calculates the unconstrained controller gain matrix for MPC.			
mpcsi m	Simulates a closed-loop system with optional saturation constraints on the manipulated variables.			
nl cmpc	Simulink S-function block for MPC controller with input and output constraints (solves quadratic program).			
nl mocsi m	Simulink S-function block for MPC controller with optional saturation constraints.			

Controller Design and Simulation - MPC mod format	
scmpc	Solves the quadratic programming problem to simulate performance of a closed-loop system with input and output constraints.
smpccl	Creates a model in MPC mod format of a closed-loop system with an unconstrained MPC controller.
smpccon	Calculates the unconstrained controller gain matrix for MPC.
smpcest	Designs a state estimator for use in MPC.
smpcsi m	Simulates a closed-loop system with optional saturation constraints on the manipulated variables.
Analysis	Calculates frequency response for a system in MPC mod format.
mod2frsp	Calculates steady-state gain matrix of a system in MPC mod format.
smpcgai n	Calculates poles of a system in MPC mod format.
smpcpol e	Calculates singular values of a frequency response.
svdfrsp	

Utility Functions	
abcdchkm	Checks dimensional consistency of (A,B,C,D) set. (Equivalent to abcachk in Control System Tool box)
dant zgmp	Solves quadratic programs.
dar ei ter	Solves discrete Riccati equation by an iterative method.
di mpul sm	Generates impulse response of discrete-time system. (Equivalent to di mpul se in Control System Toolbox)
dl qe2	Calculates state-estimator gain matrix for di screte systems.
dl si mm	Simulates discrete-time systems. (Equivalent to dl si min Control System Tool box)
mpcaugss	Augments a state-space model with its outputs.
mpcparal	Puts two state-space models in parallel. nar gchkm
Checks number of M-file arguments. (Equivalent to nar gchk in Control System Tool box)	
mpcst ai r	Creates the stairstep format used to plot manipulated variables.
vec2mat	Converts a vector to a matrix.

Purpose	Adds one or more measured disturbances to a plant model in the MPC mod format. Used to allow for feedforward compensation in MPC.
Syntax	nodel $=\operatorname{addma}($ pmod, dmod$)$
Description	The disturbance model contained in drod adds to the plant model contained in prod to form a composite, model, with the structuregiven in the fol lowing block diagram:
	prod, drod and model are in the MPC mod format (see mod in the online MATLAB Function Referencefor a detailed description). You would normally create prod and dmod using either the $t \mathrm{f} 2 \mathrm{mod}$, ss2mod or $\mathrm{th} 2 \bmod$ functions. addmed is a specialized version of par amod. Its main advantage over par amod is that it assumes all the inputs to dmod are to be measured disturbances. This saves you the trouble of designating the input types in a separate step.
Example	See ss2mod for an example of the use of this function.
Algorithm	addrod converts prod and dmod into their state-space form, then uses the mpcpar al function to build the composite model.
Restrictions	- prod and drod must have been created with equal sampling periods and number of output variables. - prod must not include measured disturbances, i.e., its mod format must specify $\mathrm{n}_{\mathrm{d}}=0$. - All inputs to dmod must be classified as manipulated variables. (They will be reclassified automatically as measured disturbances in model .) So the mod format of dmod must specify $n_{d}=n_{w}=0$ (which is the default for all model creation functions).
See Also	addmod, addumd, appmod, par amod, ser mod

Purpose

Syntax
Description

Example

Restrictions

See Also

Combines two models in the MPC mod format such that the output of one combines with the mani pulated inputs of the other. This function is specialized and rarely needed. Its main purpose is to build up a model of a complex structure that includes the situation shown in the diagram bel ow.
pnod $=\operatorname{addmod}(\bmod 1, \bmod 2)$
The output(s) of mod2 add to the manipulated variable(s) of mod1 to form a composite system, prod, with the structure given in the following block diagram:

pmod, mod1 and mod2 are in the MPC mod format (see mod in the online MATLAB F unction Referencefor a detailed description). You would normally create mod1 and mod2 using either the $\mathrm{f} f 2 \bmod$, ss2mod or $\mathrm{th} 2 \bmod$ functions.
The different input types associated with mod1 and mod2 will beretained in pmod and will be ordered as shown in the diagram.

See rod2ss for an example of the use of this function.

- nod1 and mod2 must have been created with equal sampling periods.
- The number of manipulated variables in mod1 must equal the number of output variables in nod2.
addnd, addurd, appnod, par anod, ser mod
Purpose
Syntax

model $=$ addurd(pmod , dmod)
Description
Example
Algorithm
Restrictions
See Also addmod, addmod, appmod, par amod, ser nod, smpcest

Purpose

Syntax

prod $=\operatorname{appmod}(\bmod 1, \bmod 2)$

Description

Restriction \quad mod1 and mod2 must have been created with equal sampling periods.
See Also \quad addnod, addnd, adduma, par anod, ser mod
Purpose Scales a matrix automatically or by specified mean and standard deviation.
Syntax

[ax, mx, st dx] = autosc(x)

$s x=\operatorname{scal}(x, m x)$

$s x=\operatorname{scal}(x, m x, s t d x)$

$r x=r e s c a l(x, m x)$

$r x=r e s c a l(x, m x, s t d x)$
Description
Example See $m \mathrm{r}$ for an example of the use of these functions.
See Also mhr, pl sr,wrtreg

cmpc

Purpose

Syntax

[yp,u,ym] =cmpc(plant, model, yut ,uwt ,M,P,tend,...
r,ul imylimtfilter,dpl ant,dmodel,dstep)

Description

Simulates closed-loop systems with hard bounds on manipulated variables and/or outputs using models in the MPC step format. Solves the MPC optimization problem by quadratic programming.

cmpc simulates the performance of the type of system shown in the above diagram when there are bounds on the manipulated variables and/or outputs. Measurement noise can be simulated by treating it as an unmeasured disturbance.
The required input variables are as follows:

pl ant

Is a model in the MPC step format that represents the plant.

nodel

Is a model in the MPC step format that is to be used for state estimation in the controller. In general, it can be different from pl ant if you want to simulate the effect of plant/controller model mismatch.

yut

Is a matrix of weights that will be applied to the setpoint tracking errors. If yut $=[\quad]$, the default is equal (unity) weighting of all out- puts over the entire prediction horizon. If yut ; [], it must have n_{y} columns, where n_{y} is the number of outputs. All weights must be ≥ 0.

You may vary the weights at each step in the prediction horizon by including up to P rows in ywt. Then the first row of n_{y} values applies to the tracking errors in the first step in the prediction horizon, the next row applies to the next step, etc. See mpccon for details on the form of the optimization objective function.

If you supply only nrow rows, where $1 \leq$ nrow $<\mathrm{P}$, cmpc will use the last row to fill in any remaining steps. Thus if you want the weighting to be the same for all P steps, you need only specify a single row.

unt

Same format as yut, except that unt applies to the changes in the manipulated variables. If you use unt $=$ [] , the default is zero weighting. If unt | [], it must have n_{u} columns, where n_{u} is the number of manipulated variables.

M

There are two ways to specify this variable:
If it is a scalar, cmpc interprets it as the input horizon (number of moves) as in DMC.

If it is a row vector containing n_{b} elements, each element of the vector indicates the number of steps over which $\Delta u=0$ during the optimization and cmpc interprets it as a set of n_{b} blocking factors. There may be $1 \leq n_{b} \leq P$ blocking factors, and their sum must be $\leq P$

If you set $M=$] and P | Inf, the default is $M=P$, which is equivalent to $\mathrm{M}=$ ones ($1, \mathrm{P}$) . The default value for M is 1 if $\mathrm{P}=\mathrm{nf}$.

P

The number of sampling periods in the prediction horizon. If $\mathrm{P}=\mathrm{nf}$, the prediction horizon is infinite.

tend

Is the desired duration of the simulation (in time units).

r

Is a setpoint matrix consisting of N rows and n_{y} columns, where n_{y} is the number of output variables, y :

$$
r=\left[\begin{array}{cccc}
r_{1}(1) & r_{2}(1) & \ldots & r_{n_{y}}(1) \\
r_{1}(2) & r_{2}(2) & \ldots & r_{n_{y}}(2) \\
\vdots & \vdots & \ldots & \vdots \\
r_{1}(N) & r_{2}(N) & \ldots & r_{n_{y}}(\hat{N})
\end{array}\right]
$$

where $r_{i}(k)$ is the setpoint for output j at time $t=k T$, and T is the sampling period (as specified in the step format of pl ant and model). If tend $>N T$, the setpoints vary for the first N periods in the simulation, as specified by r, and are then held constant at the values given in thelast row of r for the remainder of the simulation.

In many simulations one wants the setpoints to be constant for the entiretime, in which caser need only contain a single row of n_{y} values.
If you set $r=[\quad]$, the default is a row of n_{y} zeros.
The following input variables are optional. In general, setting one of them equal to an empty matrix causes cmpc to use the default value, which is given in the description.

ulim

Is a matrix giving the limits on the manipulated variables. Its format is as follows:

$$
\begin{aligned}
& u l i m=\left[\begin{array}{ccc}
u_{\min , 1}(1) & \ldots & u_{\min , n_{u}}(1) \\
u_{\min , 1}(2) & \ldots & u_{\min , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\min , 1}(N) & \cdots & u_{\min , n_{u}}(N)
\end{array}\right] \\
& {\left[\begin{array}{ccc}
u_{\max , 1}(1) & \ldots & u_{\max , n_{u}}(1) \\
u_{\max , 1}(2) & \ldots & u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\max , 1}(N) & \ldots & u_{\max , n_{u}}(N)
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
\Delta u_{\max , 1}(1) & \ldots & \Delta u_{\max , n_{u}}(1) \\
\Delta u_{\max , 1}(2) & \ldots & \Delta u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
\Delta u_{\max , 1}(N) & \ldots & \Delta u_{\max , n_{u}}(N)
\end{array}\right] }
\end{aligned}
$$

Note that it contains three matrices of N rows. In this case, the limits on N are $1 \leq N \leq n_{b}$, where n_{b} is the number of times the manipulated variables are to change over the input horizon. If you supply fewer than n_{b} rows, the last row is repeated automatically.

The first matrix specifies the lower bounds on the n_{u} manipulated variables. For example, $u_{\min , j}(2)$ is the lower bound for manipulated variable j for the second move of the manipulated variables (where the first move is at the start of the prediction horizon). If $u_{\text {min }, j}(k)=-i n f$, manipulated variablej will have no lower bound for that move.

The second matrix gives the upper bounds on the manipulated variables. If $u_{\text {max, },}(k)=i n f$, manipulated variablej will have no upper bound for that move.

The lower and upper bounds may be either positive or negative (or zero) as long as $u_{\text {min }, j}(k) \leq u_{\text {max }}(k)$.
The third matrix gives the limits on the rate of change of the manipulated variables. In other words, cmpc will forcel $u_{j}(k)-u_{j}(k-1) \mid \leq \Delta u_{\text {max }}(\mathrm{j})$. The limits on the rate of change must be nonnegative and finite If you want it to be unbounded, set the bound to a large number (but not too large-a value of 10^{6} should work well in most cases).
The default is $\mathrm{u}_{\text {min }}=-\mathrm{inf}, \mathrm{u}_{\max }=\mathrm{inf}$ and $\Delta \mathrm{u}_{\max }=10^{6}$

ylim

Same idea as for ul i m but for the lower and upper bounds of the outputs. The first row applies to the first point in the prediction horizon. The default is $y_{\text {min }}$ $=-$ inf, and $y_{\text {max }}=$ inf.

tfilter

Is a matrix of time constants for the noise filter and the unmeasured disturbances entering at the plant output. The first row of n_{y} elements gives the noise filter time constants and the second row of n_{y} elements gives the time constants of the lags through which the unmeasured disturbance steps pass. If tfilter only contains one row, the unmeasured disturbances are assumed to be steps. If you set tf i It er $=[$] or omit it, the default is no noise filtering and steplike unmeasured disturbances.

dpl ant

Is a model in MPC step format representing all the disturbances (measured and unmeasured) that affect pl ant in the above diagram. If dpl ant is provided, then input dstep is also required. For output step disturbances, set dpl ant $=[$. The default is no disturbances.

dnodel

Is a model in MPC step format representing the measured disturbances. If dnodel is provided, then input dst ep is also required. If there are no measured disturbances, set drodel=[]. For output step disturbances, set drodel=[]. If there are both measured and un- measured disturbances, set the columns of dnodel corresponding to the unmeasured disturbances to zero. The default is no measured disturbances.

dstep

Is a matrix of disturbances to the plant. For output step disturbances (dpl ant =[] and drodel=[]), the format is the same as for r. For disturbances through step-response models (dpl ant only or both dpl ant and dmodel nonempty), the format is the same as for r, except that the number of columns is n_{d} rather than n_{y} The default is a row of zeros.

Notes

- You may use a different number of rows in the matrices r , ul i m yl i mand dst ep, should that be appropriate for your simulation.
- The ul i mconstraints used here are fundamentally different from the usat constraints used in the mpcsi mfunction. The ul i mconstraints are defined relative to the beginning of the prediction horizon, which moves as the simulation progresses. Thus at each sampling period, k, the ul i mconstraints apply to a block of calculated moves that begin at sampling period k and extend for the duration of the input horizon. The usat constraints, on the other hand, are relative to the fixed point $t=0$, the start of the simulation.

The calculated outputs are as follows (all but yp are optional):

yp

Is a matrix containing M rows and n_{y} columns, where $M=\max (f i x($ tend $=T)+1$, 2). The first row will contain the initial condition, and row $\mathrm{k}-1$ will give the values of the plant outputs, y (see above diagram), at time $\mathrm{t}=\mathrm{kT}$.
u
Is a matrix containing the same number of rows as yp and n_{u} columns. The time corresponding to each row is the same as for yp. The elements in each row are the values of the manipulated variables, u (see above diagram).

ym

Is a matrix of the same structure as yp, containing the values of the predicted output from the state estimator in the controller. These will, in general, differ from those in yp if model ; pl ant and/or there are unmeasured disturbances. The prediction includes the effect of the most recent measurement, i.e, it is $y(k \mid k)$.

For unconstrained problems, cmpc and mpcsi mshould give the same results. The latter will be faster because it uses an analytical solution of the QP problem, whereas cmpc solves it by iteration.

Examples

Consider the linear system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 \mathrm{e}^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 \mathrm{e}^{-3 \mathrm{~s}}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 \mathrm{e}^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 \mathrm{e}^{-3 \mathrm{~s}}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

The fol lowing statements build the model and set up the controller in the same way as in the mpcsi mexample.

```
g11=pol y2tfd(12. 8,[16.7 1],0, 1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18. 9,[21.0 1], 0, 3);
g22=pol y2tfd(-19. 4,[14.4 1], 0, 3);
del t=3; ny=2; tfinal =90;
model =t fd2st ep( t fi nal , del t, ny, g11, g21, g12, g22) ;
pl ant =model ;
P=6; M=2; yut =[ ]; uut =[1 1];
tend=30; r=[ 0 1];
```

Here, however, we will demonstrate the effect of constraints. First we set a limit of 0.1 on the rate of change of u_{1} and a minimum of -0.15 for u_{2}.
ulimf-inf -0.15 inf inf 0.1 100];
ylim:];
$[y, u]=c m p c(p l a n t$, nodel , yut, unt, M P, tend, $r, u l i m y l i m) ;$ pl ot all ($y, u, d e l t$), pause

Note that $\Delta \mathrm{u}_{2}$ has a large (but finite) limit. It never comes into play.

We next apply a lower bound of zero to both outputs:
ulimf-inf -0. 15 inf inf 0. 1 100];
ylimfo 0 inf inf];
$[y, u]=c m p c$ ($p l$ ant , model , yut, unt, M P, tend, r, ul i m yl im); pl ot all ($y, u, d e l t)$, pause

The following results show that no constraints are violated.

Restriction Initial conditions of zero are used for all the variables. This simulates the condition where all variables represent a deviation from a steady-state initial condition.

Suggestion

See Also

Problems with many inequality constraints can be very time consuming. You can minimize the number of constraints by:

- Using small values for P and/or M
- Leaving variables unconstrained (limits at tinf) intermittently unless you think the constraint is important.
pl otall, pl ot each, mpccl, mpccon, mpcsim
$\left.\begin{array}{ll}\text { Purpose } & \begin{array}{l}\text { Converts a single-input-single-output, continuous-time transfer function in } \\ \text { standard MATLAB polynomial form (including an optional time delay) to a } \\ \text { sampled-data transfer function. }\end{array} \\ \text { [numd, dend] = cp2dp(num den, del } t \text {) } \\ \text { [numd, dend] }=c p 2 d p(n u m \text { den, del } t, \text { del ay) } \\ \text { numand den are the numerator and denominator polynomials of the } \\ \text { continuous-time system (in the standard Control Tool box polynomial format), } \\ \text { del } t \text { is the sampling period, and del ay is the (optional) time delay (in time } \\ \text { units). If you omit del ay, cp2dp assumes zero delay. The calculated results are } \\ \text { numd and dend, the numerator and denominator polynomials of the } \\ \text { corresponding discrete-time transfer function. cp2dp adds a zero-order hold at } \\ \text { the input of the continuous-timesystem during the conversion to discrete-time. }\end{array}\right\}$

Purpose

Syntax

Description

Solves the discrete Riccati equation by an iterative method to determine the optimal steady-state gain (and optional covariance matrices) for a discrete Kalman filter or state estimator.
$k=d l$ qe2 (phi, gamw, c, q, r)
$[k, m p]=d l q e 2(p h i, g a m w, c, q, r)$
Filter form:
Consider the state-space description:

$$
\begin{aligned}
x(k+1) & =\Phi x(k)+\Gamma_{u} u(k)+\Gamma_{d} d(k)+\Gamma_{w} w(k) \\
y(k) & =y(k)+z(k) \\
& =C x(k)+D u(k)+z(k)
\end{aligned}
$$

where x is a vector of n state variables, u contains n_{u} known inputs, y is a vector of n_{y} measured outputs, y is the noisefree output, w is a vector of n_{w} unmeasured disturbance inputs, z is a vector of n_{y} measurement noise inputs, and $\Phi, \Gamma_{u}, \Gamma_{\mathrm{w}}, \mathrm{C}$ and D are constant matrices. We assume that w and z are stationary random-normal signals (white noise) with covariances

$$
\begin{aligned}
& E\left\{w(k) w^{\top}(k)\right\}=Q \\
& E\left\{w(k) z^{\top}(k)\right\}=R_{12}=0 \\
& E\left\{z(k) z^{\top}(k)\right\}=R
\end{aligned}
$$

The steady-state K alman filter is

$$
\begin{aligned}
& \dot{x}(k \mid k)=x(k \mid k-1)+K[y(k)-C x(k \mid k-1)-D u(k)] \\
& x(k+1 \mid k)=\Phi \dot{x}(k \mid k)+\Gamma_{u} u(k) \\
& y(k \mid k)=C x(k \mid k)+D u(k)
\end{aligned}
$$

where $\mathrm{x}(\mathrm{k} \mid \mathrm{k})$ is the estimate of $\mathrm{x}(\mathrm{k})$ based on the measurements available at period $k, x(k \mid k-1)$ is that based on the measurements available at period
$\mathrm{k}-1$, etc. N ote that y is an estimate of the noise-free output, y . The steady-state Kalman gain, K , is the solution of

$$
\begin{aligned}
& \mathrm{K}=M C^{\top}\left[\mathrm{R}+C M C^{\top}\right]^{-1} \\
& \mathrm{M}=\Phi P \Phi^{\top}+\Gamma_{\mathrm{w}} Q \Gamma_{\mathrm{w}}^{\top} \\
& \mathrm{P}=\mathrm{M}-K C M
\end{aligned}
$$

where M and P may be interpreted as the expected covariance of the errors in the state estimates before and after the measurement update, respectively, i.e.,

$$
\begin{aligned}
& M=E\left\{x(k \mid k-1) x(k \mid k-1)^{\top}\right\} \\
& P=E\left\{x(k \mid k) x(k \mid k)^{\top}\right\}
\end{aligned}
$$

where, by definition,

$$
\begin{aligned}
& x(k \mid k)=x(k)-x(k \mid k) \\
& x(k \mid k-1)=x(k)-x(k \mid k-1)
\end{aligned}
$$

The dl qe2 function takes $\Phi, \Gamma_{\mathrm{u}}, \mathrm{C}, \mathrm{R}$, and Q as inputs and cal culates K, M, and P. The last two output arguments are optional.

Note that the input and output arguments are identical to those for dl qe in the Control Toolbox. The advantage of dl qe2 is that it can handle a singular state-transition matrix (Φ), e.g., for systems with time delay.
Predictor form:

You can also use dl qe2 to calculate a state-estimator in the predictor form:

$$
\begin{aligned}
& x(k+1 \mid k)=\Phi x(k \mid k-1)+\Gamma_{u} u(k)+K_{p} e(k) \\
& y(k \mid k-1)=C x(k \mid k-1)+D u(k) \\
& e(k)=y(k)-y(k \mid k-1)
\end{aligned}
$$

The relationship between K_{p}, the estimator gain for the predictor form, and K as calculated by dl qe2 is:

$$
K_{p}=\Phi K
$$

The matrix M calculated by dl qe2 is the expected covariance of the errors in $x(k \mid k-1)$.

Algorithm

Example
dl qe2 calls dar ei ter ${ }^{1}$, which solves the discrete algebraic Riccati equation using an iterative doubling algorithm.

Consider a system represented by the block diagram:

1. We gratefully acknowledge Kjell Gustafsson, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, who provided this function.
where G_{u} and G_{w} are first-order, discrete-time transfer functions.

$$
\mathrm{G}_{\mathrm{u}}(\mathrm{z})=\frac{0.20}{1-0.8 \mathrm{z}^{-1}} \quad \mathrm{G}_{\mathrm{w}}(\mathrm{z})=\frac{0.3}{1-0.95 z^{-1}}
$$

and the statistics of the unmeasured inputs are $\mathrm{Q}=2, \mathrm{R}=1$.
We use the appropriate MPC Tool box functions to build a model of the system, then calculate the optimal gain:

```
del t=2; ny=1;
gu=pol y2tfd( 0. 2,[ 1 - 0. 8], del t);
Gw=pol y2tfd(0. 3, [ 1 - 0. 95], del t );
[ phi, gam c, d] =mod2ss(tf d2mod(del t, ny, gu, Gw) );
k=dl qe2(phi , gam(: , 2), c, 2, 1)
```

The result is:

$$
\begin{array}{rr}
\mathrm{k}= & 0 \\
1.0619
\end{array}
$$

Note that the gain for the first state is zero since this corresponds to the state of G_{u}, which is unaffected by the disturbance, w. Also notice that in the composite system, the second column of gamis Γ_{w}. This is because of the order in which gu and G_{w} were specified as inputs to the $t \mathrm{fd} 2$ mod function.

See Also smpcest

imp2step

Purpose Constructs a multi-input multi-output model in MPC step format frommulti-input single-output impulse response matrices.
Syntax

pl ant = imp2step(del t , nout, t het a 1 , thet $\mathrm{a} 2, \ldots$,

 \(t\) het a25)
 Given the impulse response coefficient matrices, thet a1, thet a2, etc., a model
in MPC step format is constructed. E ach thet ai is an n-by- n_{u} matrix
corresponding to the impulse response coefficients for output i . n is the number
of the coefficients and n_{u} is the number of inputs.

del t is the sampling interval used for obtaining the impulse response
coefficients. nout is the output stability indicator. F or stable systems, this
argument is set equal to number of outputs, n_{y}. For systems with one or more
integrating outputs, this argument is a column vector of length n_{y} with
nout (i) $=0$ indicating an integrating output and nout (i) $=1$ indicating a stable
output.
Example See $\mathrm{ml} r$ and pl sr for examples of the use of this function.
Restriction The limit on the number of impulse response matrices thet ai is 25 .
See Also mir, pl sr

Purpose	Determines impulse response coefficients for a multi-input single-output system via Multivariable Least Squares Regression or Ridge Regression.
Syntax	[theta, yres] = mhr(xreg, yreg, ni nput) [thet a, yres] = mh r (xreg, yreg, ni nput, pl ot opt, wh het a, woll thet a)
Description	xreg and yreg are the input matrix and output vector produced by routines such as wrtreg. ni nput is number of inputs. Least Squares is used to determine the impulse response coefficient matrix, t het a. Columns of thet a correspond to impulse response coefficients from each input. Optional output yr es is the vector of residuals, thedifference between the actual outputs and the predicted outputs.
	Optional inputs include pl ot opt, wt het a, and wdel thet a. No plot is produced if pl ot opt is equal to 0 which is the default; a plot of the actual output and the predicted output is produced if pl ot opt $=1$; two plots - plot of actual and predicted output, and plot of residuals - areproduced for pl ot opt $=2$. Penalties on the squares of t het a and the changes in thet a can be specified through the scalar weights wt het a and wdel thet a, respectively (defaults are 0). t het a is calculated as follows: thetal $=\left(X^{\top} X\right)^{-1} X^{\top} Y$ where
	$X=\left[\begin{array}{c} \text { xreg } \\ \text { wtheta } \times \mathrm{I} \\ \text { wdeltheta } \times \text { delI } \end{array}\right]$
	$Y=\left[\begin{array}{c} \text { yreg } \\ 0 \\ \vdots \\ 0 \end{array}\right]$

where I is identity matrix of dimension $\mathrm{n} * \mathrm{n}_{\mathrm{u}}$

$$
\text { dell }=\left[\begin{array}{ccccc}
-1 & 1 & 0 & \ldots & 0 \\
0 & -1 & 1 & \ldots & 0 \\
& & \vdots & & \\
0 & \ldots & 0 & -1 & 1 \\
0 & \ldots & 0 & 0 & -1
\end{array}\right]
$$

dimension of dell is $\mathrm{n} * \mathrm{n}_{\mathrm{u}}$ by $\mathrm{n} * \mathrm{n}_{\mathrm{u}}$.
then

$$
\begin{array}{ll}
\text { theta }=[\text { theta1 }(1: \mathrm{n}) & \operatorname{theta1}(\mathrm{n}+1: 2 \mathrm{n}) \ldots \\
& \operatorname{theta1}(\mathrm{nu} *(\mathrm{n}-1)+1: \mathrm{nu} * \mathrm{n})]
\end{array}
$$

Example Consider the following two-input single-output system:

$$
y(s)=\left[\frac{5.72 e^{-14 s}}{60 s+1} \frac{1.52 e^{-15 s}}{25 s+1}\right]\left[\begin{array}{l}
u_{1}(s) \\
u_{2}(s)
\end{array}\right]
$$

Load the input and output data. The input and output data were generated from the above transfer function and random zero-mean noise was added to the output. Sampling time of 7 minutes was used.

Ioad mirdat;
Determine the standard deviations for input data using the function aut osc.
[ax, mx, st dx] = autosc(x);
Scale the input data by their standard deviations only.

```
mx = [0,0];
sx = scal (x, mx, st dx);
```

Put the input and output data in a form such that they can be used to determine the impulse response coefficients. 35 impulse response coefficients (n) are used.

```
n = 35;
[xreg,yreg] = urtreg(sx,y,n);
```

Determine the impulse response coefficients via mh r. By specifying pl ot opt $=2$, two plots - plot of predicted output and actual output, and plot of the output residual (or predicted error) - are produced.

```
ni nput = 2;
```

pl ot opt $=2$;
[thet $a, y r e s$] $=$ ml r(xreg, yreg, ni nput, pl ot opt) ;

scale thet a based on the standard deviations used in scalıng the input.
thet $a=\operatorname{scal}(t h e t a, m x$, st $d x)$;
Convert the impulse model to a step model to be used in MPC design. Recall that a sampling time of 7 minutes was used in determining the impulse model. Number of outputs (1 in this case) must be specified.

```
nout = 1;
del t = 7;
model = i mp2step(del t, nout, thet a);
```

Plot the step response coefficients.
pl ot step(nodel)

u2 step response : y1

Purpose

Description

Consider the process shown in the above block diagram. Its discretetime LTI state-space representation is:

$$
\begin{aligned}
x(k+1) & =\Phi x(k)+\Gamma_{u} u(k)+\Gamma_{d} d(k)+\Gamma_{w} w(k) \\
y(k) & =y(k)+z(k) \\
& =C x(k)+D_{u} u(k)+D_{d} d(k)+D_{w} w(k)+z(k)
\end{aligned}
$$

where x is a vector of n state variables, u represents the n_{u} manipulated variables, d represents n_{d} measured but freely-varying inputs (i.e., measured disturbances), w represents n_{w} unmeasured disturbances, y is a vector of n_{y} plant outputs, z is measurement noise, and Φ, Γ_{u}, etc., are constant matrices of appropriate size. The variable $y(k)$ represents the plant output before the addition of measurement noise. Define:

$$
\begin{aligned}
& \Gamma=\left[\Gamma_{\mathrm{u}} \Gamma_{\mathrm{d}} \Gamma_{\mathrm{w}}\right] \\
& \mathrm{D}=\left[\mathrm{D}_{\mathrm{u}} \mathrm{D}_{\mathrm{ud}} \mathrm{D}_{\mathrm{w}}\right]
\end{aligned}
$$

In some cases one would like to include n_{ym} measured and n_{yu} unmeasured outputs in y , where $\mathrm{n}_{\mathrm{ym}}+\mathrm{n}_{\mathrm{yu}}=\mathrm{n}_{\mathrm{y}}$. If so, the mod format assumes that the y vector and the C and D matrices are arranged such that the measured outputs come first, followed by the unmeasured outputs.

The mod format is a single matrix that contains the Φ, Γ, C, and D matrices, plus some additional information. Let M be the mod representation of the above system. Its overall dimensions are:

- Number of rows $=\mathrm{n}+\mathrm{n}_{\mathrm{y}}+1$
- Number of columns $=\max \left(7,1+\mathrm{n}+\mathrm{n}_{\mathrm{u}}+\mathrm{n}_{\mathrm{d}}+\mathrm{n}_{\mathrm{w}}\right)$

Theminf o vector is the first seven elements of the first row in M. The elements of min o are:
minfo (1) T, the sampling period used to create the model.
(2) n, the number of states.
(3) n_{u}, the number of manipulated variable inputs.
(4) n_{d}, the number of measured disturbances.
(5) n_{w} the number of unmeasured disturbances.
(6) n_{ym}, the number of measured outputs.
(7) n_{yu}, the number of unmeasured outputs.

The remainder of M contains the discrete state-space matrices:
Φ in rows 2 to $\mathrm{n}+1 \quad$ columns 2 to $\mathrm{n}+1$
Γ in rows 2 to $n+1$
columns $n+2$ to $n+n_{u}+n_{d}+n_{w}+1$
C in rows $n+2$ to $n+n_{y}+1$
columns 2 to $n+1$
D in rows $n+2$ to $n+n_{y}+1$
columns $n+2$ to $n+n_{u}+n_{d}+n_{w}+1$
Notes
Since the minfo vector requires seven columns, this is the minimum possible number of columns in the mod format, regardless of the dimensions of the state-space matrices.

Also, the first col umn is reserved for other uses by MPC Tool box routines. Thus the state-space matrices start in column 2, as described above.

In order for the mpi nf o routineto recognize matrices in the MPC mod format, the $(2,1)$ element is set to NaN (Not-a-Number).

Example	See ss2mod for a mod format example.
See Also	mod2ss, mod2step, step format, mpcinfo, ss2mod, step,tfd2mod, tf format, th2mod, theta format

Purpose

Syntax

Description

Calculates the complex frequency response in varying format of a system in MPC mod format.
frsp $=$ mod2frsp(nod, freq)

mod2f rsp calculates the complex frequency response of a system (mod) in MPC mod format. The desired frequencies are given by the input f req, a row vector of 3 elements specifying the lower frequency as a power of 10 , the upper frequency as a power of 10 , and the number of frequency points.

Optional inputs out and in are row vectors that specify the outputs and inputs for which the frequency response is to be generated. If these variables are omitted or empty, the default is to use all outputs and inputs.

Optional input bal flgindicates whether the system's Φ matrix should be balanced (using the MATLAB bal ance command). If bal fI g is nonzero, balancing is performed. Balancing improves the conditioning of the problem, but may cause errors in the frequency response. If bal $\mathrm{fI} \mathrm{g}=[\mathrm{]}$ or is omitted, no balancing is performed.

Output $f r s p$ is the frequency response matrix given in varying format. Let $F(\omega)$ denote a matrix-valued function of the independent variable ω. Then the N sampled values $F\left(\omega_{1}\right), \ldots, F\left(\omega_{N}\right)$ are contained in frsp as follows:

$$
\text { frsp }=\left[\begin{array}{cc}
F\left(\omega_{1}\right) & \omega_{1} \\
\vdots & \vdots \\
F\left(\omega_{\mathrm{i}}\right) & \omega_{\mathrm{N}} \\
\vdots & 0 \\
\mathrm{~F}\left(\omega_{\mathrm{N}}\right) & \vdots \\
& 0 \\
0 \ldots 0 \mathrm{~N} & \mathrm{inf}
\end{array}\right]
$$

If the dimension of each submatrix $F\left(\omega_{\mathrm{i}}\right)$ is n by m , then the dimensions of frsp is $\mathrm{n} \cdot \mathrm{N}+1$ by $\mathrm{m}+1$.

mod2frsp, varying format

Optional output eyefrsp is in varying format and represents I-F(ω_{i}) at each frequency. This output can only be specified for square submatrices and may be useful in computing the frequency responses of both the sensitivity and complementary sensitivity functions.

Example

Consider the linear system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 \mathrm{e}^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 \mathrm{e}^{-3 \mathrm{~s}}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 \mathrm{e}^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 \mathrm{e}^{-3 \mathrm{~s}}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

See the mpcal examplefor the commands that build the a closed-loop model for this process using a simple controller. H owever for this example, del $t=6$ and t i i nal $=90$ are used to reduce the number of step response coefficients.

Now we will calculate and plot the frequency response of the sensitivity and complementary sensitivity functions.

```
freq = [-3, 0, 30];
in = [1: ny]; %input is r for comp. sensitivity
out = [1: ny]; % out put is yp for comp. sensitivity
[frsp, eyefrsp] = mod2frsp(cl mod,freq,out,in);
pl otfrsp(eyefrsp); % Sensitivity
pause;
```


pl ot trsp(trsp); \% Compl ementary Sensıtıvity pause;

mod2frsp, varying format

Calculate and plot the singular values for the sensitivity function response.
[si gra, onega] = svdfrsp(eyef rsp);
cl g;
semil ogx(onega, si gma) ;
title('Si ngul ar Val ues vs. Frequency');
xl abel ('Frequency (radi ans/ti ne)');
yl abel ('Si ngul ar Val ues');

Algorithm The algorithm to calculate the complex frequency response involves a matrix inverse problem which is solved via a Hessenberg matrix.

Reference

See Also mod, mpccl, pl ot frsp, smpccl, svdfrsp

Purpose Changes the sampling period of a model in MPC mod format.
Syntax neurrod $=\bmod 2 \bmod ($ ol dmod, del t2)
Description

See Also
mod, ss2mod

Purpose

Syntax

Description

Consider the process shown in the above block diagram. mod2ss assumes that mod is a description of the above process in the MPC mod format (see mod in the online MATLAB Function Reference for more details). An equivalent state-space representation is:

$$
\begin{aligned}
x(k+1) & =\Phi x(k)+\Gamma_{u} u(k)+\Gamma_{d} d(k)+\Gamma_{w} w(k) \\
y(k) & =\bar{y}(k)+z(k) \\
& =C x(k)+D_{u} u(k)+D_{d} d(k)+D_{w} w(k)+z(k)
\end{aligned}
$$

where x is a vector of n state variables, u represents the n_{u} manipulated variables, d represents n_{d} measured but freely-varying inputs (i.e., measured disturbances), w represents n_{w} unmeasured disturbances, y is a vector of n_{y} plant outputs, z is measurement noise, and $\Phi, \Gamma_{\mathrm{u}}$, etc., are constant matrices of appropriate size. The variable $y(k)$ represents the plant output before the addition of measurement noise. Define:

$$
\begin{aligned}
& \Gamma=\left[\Gamma_{\mathrm{u}} \Gamma_{\mathrm{d}} \Gamma_{\mathrm{w}}\right] \\
& \mathrm{D}=\left[\mathrm{D}_{\mathrm{u}} \mathrm{D}_{\mathrm{d}} \mathrm{D}_{\mathrm{w}}\right]
\end{aligned}
$$

nod2ss extracts the Φ, Γ, C, and D matrices from the input variable, mod. It also extracts the vector min o, which contains additional information about the sampling period, number of each type of input and output, etc. see mod in the online MATLAB Function Referencefor more details on min o.

Examples

1 See the example in the description of dl qe2.
2 Suppose you have a plant with the structure

where the inputs and outputs are all scalars, and you have constructed nod1 and mod2 using the commands:

```
phi 1=di ag([-0.7, 0.8]); gam\{1, -1, 0; 0, 0, 1];
cl={0.2 -0.4]; dl=zeros(1,3);
minfol=[ 1 2 1 1 1 1 0];
modl=ss2mod( phi 1, gam1, c1, d1, mi nf o1);
phi 2=0.2; gam2=[1, -0.5, 0.2];
c2=3; d2=[0.2, 0, 0];
minfo2=[ 1 1 1 1 1 1 0];
mod2=ss2mod(phi 2, gam2, c2, d2, mi nf o2) ;
pmod=addmod(mod1, mod2);
```

Now you want to calculate the response to a step change in d_{2}, which is the fourth input to the composite system, prod. One way to do it is:

```
[ phi , gam c, d, mi nf o] =mod2ss( pmod);
nst ep=10;
ustep={ zeros(nstep, 3) ones(nstep, 1) zeros(nstep, 2) ];
% Define step in d2
y=dl si mm( phi, gam c, d, ust ep);
% si mul ate response to step i nput
pl ot ([ 0: nstep-1], y)
```

The results of the nod2ss call are:

phi $=$		
-0.7000	0	3.0000
0	0.8000	0
0	0	-2.0000

gam=

1. $0000 \quad$ 2. $2000 \quad-1.0000$

0	0	1.0000	0
0	-.5000	0	0.2000

C=
0. $2000-0.4000 \quad 0$
d=

0	0
minfo=	
1	3

0

2
2
0
And the step response is:

mod, ss2mod

Purpose	Uses a model in the mod format to calculate the step response of a SISO or MIMO system in MPC step format.
Syntax	```pl ant = mod2step(mod,tfinal) [pl ant,dpl ant] = mod2step(mod, tfinal, del t 2, nout)```
Description	The input variable mod is assumed to be a model in the mod format (see mod in the onlineMATLAB Function Referencefor a description). You would normally create it using ss 2 mod, tf d 2 mod , or th 2 mod . The input variabletfinal is the time at which you would like to end the step response.
	The optional input variable del t 2 is the desired sampling period for the step response. If you use del t 2=[] or omit it, the default is equal to the sampling period of mod (contained in the minfo vector of mod).
	The optional input variable nout is the output stability indicator. F or stable systems, set nout equal to the number of outputs, n_{y}. For systems with one or more integrating outputs, nout is a column vector of length n_{y} with nout (i) $=0$ indicating an integrating output and nout (i) $=1$ indicating a stable output. If you use nout $=[]$ or omit it, the default is nout $=n_{y}$ (only stable outputs).
	pl ant and dpl ant are matrices in MPC step format containing the calculated step responses. pl ant is the response to the manipulated variables, and dpl ant is the response to the disturbances (if any), both measured and unmeasured. The overall dimensions of these matrices are:
	plant $n-b y-n_{y}+n_{y}+2$ rows, n_{u} columns.
	dpl ant $n-$ by $-\mathrm{n}_{\mathrm{y}}+\mathrm{n}_{\mathrm{y}}+2$ rows, $\mathrm{n}_{\mathrm{d}}+\mathrm{n}_{\mathrm{w}}$ columns.
	where $\mathrm{n}=$ round (tfi nal / delt 2)
	It is assumed that stable step responses are nearly constant after n sampling periods, while integrating responses increase with a constant slope after n-1 sampling periods.
	Each column gives the step response with respect to the corresponding input variable. Within each column, the first n_{y} elements are the response for each output at time $t=T$, the next n_{y} elements give each output at time $t=2 T$, etc.

The last $\mathrm{n}_{\mathrm{y}}+2$ rows contain nout, n_{y} and del t 2 , respectively (all in column 1 - any remaining elements in these rows are set to zero). In other words, for pl ant the arrangement is as follows:

$$
\text { plant }=\left[\begin{array}{ccccc}
& S_{1} & & \\
& S_{2} & & \\
& \vdots & & \\
& S_{n} & & \\
\operatorname{nout}(1) & 0 & \cdots & 0 \\
\operatorname{nout}(2) & 0 & \cdots & 0 & \vdots \\
\vdots & \vdots & & 0 \\
\operatorname{nout}\left(n_{y}\right) & 0 & \cdots & 0 \\
n_{y} & 0 & \cdots & 0 \\
\operatorname{delt} 2 & 0 & \cdots & 0
\end{array}\right]_{\left(n \cdot n_{y}+n_{y}+2\right) \times n_{u}}
$$

where

$$
S_{i}=\left[\begin{array}{cccc}
S_{1,1, i} & S_{1,2, i} & \ldots & S_{1, n_{u}, i} \\
S_{2,1, i} & S_{2,2, i} & \ldots & S_{2, n_{u}, i} \\
\vdots & & & \\
S_{n_{y}, 1, i} & S_{n_{y}, 2, i} & \ldots & S_{n_{y}, n_{u}, i}
\end{array}\right]
$$

$\mathrm{S}_{\mathrm{kji}}$ is the $\mathrm{i}^{\text {th }}$ step response coefficient describing the effect of input j on output k.

The arrangement of dpl ant is similar; the only difference is in the number of columns.

mod2step, step format

Example

The following process has 3 inputs and 4 outputs:

```
phi =di ag([0. 3, 0. 7, - 0. 7]);
gamFeye( 3);
c={1 0 0; 0 0 1; 0 1 1; 0 1 0];
d=[1 0 0; zeros(3,3)];
```

We first calculate its step response for 4 samples (including the initial condition) with respect to each of theinputs using the Control Tool box function, dstep:

```
nstep=4; del t=1. 5;
yu1=dst ep( phi, gam c, d, 1, nst ep)
yu2=dst ep(phi, gam c, d, 2, nstep)
yu3=dst ep( phi , gam c, d, 3, nst ep)
```

The results are:

	Response to u_{1}				Response to u_{2}				Response to u_{3}			
Time	y_{1}	y_{2}	y_{3}	y_{4}	y_{1}	y_{2}	y_{3}	y_{4}	y_{1}	y_{2}	y_{3}	y_{4}
0	1	0	0	0	0	0	0	0	0	0	0	0
T	2	0	0	0	0	0	1	1	0	1	1	0
2 T	2.3	0	0	0	0	0	1.7	1.7	0	0.3	0.3	0
$3 T$	2.39	0	0	0	0	0	2.19	2.19	0	0.79	0.79	0

We then use mod2st ep to do the same job:

```
pl ant =nod2st ep( ss2mod( phi , gam, c, d, del t ), ( nst ep-1)*del t)
```

| obtaining the results:
 pl ant $=$ | | |
| ---: | :--- | ---: | ---: |
| 2.0000 | 0 | 0 |
| 0 | 0 | 1.0000 |
| 0 | 1.0000 | 1.0000 |
| 0 | 1.0000 | 0 |
| 2.3000 | 0 | 0 |
| 0 | 0 | 0.3000 |
| 0 | 1.7000 | 0.3000 |
| 0 | 1.7000 | 0 |
| 2.3900 | 0 | 0 |
| 0 | 0 | 0.7900 |
| 0 | 2.1900 | 0.7900 |
| 0 | 2.1900 | 0 |
| 1.0000 | 0 | 0 |
| 1.0000 | 0 | 0 |
| 1.0000 | 0 | 0 |
| 1.0000 | 0 | 0 |
| 4.0000 | 0 | 0 |
| 1.5000 | 0 | 0 |

[^3]
Purpose

Syntax

Description

Consider the process shown in the above block diagram. A state-space representation is:

$$
\begin{aligned}
z(k+1) & =\Phi x(k)+\Gamma_{u} u(k)+\Gamma_{d} d(k)+\Gamma_{w} w(k) \\
y(k) & =y(k)+D_{u} u(k)+D_{d} d(k)+D_{w} w(k)+z(k) \\
& =y(k)+z(k)
\end{aligned}
$$

where x is a vector of n state variables, u is a vector of n_{u} manipulated variables, d is a vector of n_{d} measured disturbances, w is a vector of n_{w} unmeasured disturbances, y is a vector of n_{y} plant outputs, z is measurement noise, and $\Phi, \Gamma_{u}, \Gamma_{d}, \Gamma_{\mathrm{w}}$, etc., are constant matrices of appropriate size. The variable $y(k)=C x(k)$ represents the plant output before the addition of the direct contribution of the inputs $\left[D_{u} u(k)+D_{d} v(k)+D_{w} w(k)\right]$ and the measurement noise [z(k)]. (The variable \bar{y} is the output before addition of the measurement noise). Define:

$$
\begin{aligned}
& \Delta u(k)=u(k)-u(k-1) \\
& \Delta x(k)=x(k)-x(k-1)
\end{aligned}
$$

etc. Then equations 4.28 and 4.29 can be converted to the form

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{a}}(\mathrm{k}+1)=\Phi_{\mathrm{a}} \mathrm{x}_{\mathrm{a}}(\mathrm{k})+\Gamma_{\mathrm{ua}} \Delta \mathrm{u}(\mathrm{k})+\Gamma_{\mathrm{da}} \Delta(\mathrm{k})+\Gamma_{\mathrm{wa}} \Delta \mathrm{w}(\mathrm{k}) \\
& \mathrm{y}(\mathrm{k})=\mathrm{C}_{\mathrm{a}} \mathrm{x}_{\mathrm{a}}(\mathrm{k})+\mathrm{D}_{\mathrm{u}} \mathrm{u}(\mathrm{k})+\mathrm{D}_{\mathrm{d}} \mathrm{~d}(\mathrm{k})+\mathrm{D}_{\mathrm{w}} \mathrm{w}(\mathrm{k})+\mathrm{z}(\mathrm{k})
\end{aligned}
$$

where, by definition,

$$
\begin{aligned}
x_{a}(k) & =\left[\begin{array}{c}
\Delta x(k) \\
y(k)
\end{array}\right] \\
\Phi_{\mathrm{a}} & =\left[\begin{array}{cc}
\Phi & 0 \\
C \Phi & 1
\end{array}\right] \quad \Gamma_{\mathrm{a}}=\left[\begin{array}{ll}
\Gamma_{\mathrm{ua}} & \Gamma_{\mathrm{da}} \Gamma_{\mathrm{wa}}
\end{array}\right] \\
\Gamma_{\mathrm{ua}} & =\left[\begin{array}{c}
\Gamma_{\mathrm{u}} \\
\mathrm{C} \Gamma_{\mathrm{u}}
\end{array}\right] \quad \Gamma_{\mathrm{da}}=\left[\begin{array}{c}
\Gamma_{\mathrm{d}} \\
C \Gamma_{\mathrm{d}}
\end{array}\right] \quad \Gamma_{\mathrm{wa}}=\left[\begin{array}{c}
\Gamma_{\mathrm{w}} \\
C \Gamma_{\mathrm{w}}
\end{array}\right] \\
C_{a} & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D_{a}=\left[\begin{array}{ll}
\mathrm{D}_{\mathrm{u}} & \mathrm{D}_{\mathrm{d}} \\
D_{\mathrm{w}}
\end{array}\right]
\end{aligned}
$$

The mpcaugss function takes the matrices $\Phi, \Gamma\left(=\left[\Gamma_{\mathrm{u}} \Gamma_{\mathrm{d}} \Gamma_{\mathrm{w}}\right]\right), \mathrm{C}$ as input, and creates the augmented matrices $\Phi_{a}, \Gamma_{a}, C_{a}$ and D_{a} in the form shown above. The D input matrix is optional. If you include it, mpcaugss assumes it has the form $D=\left[D_{u} D_{d} D_{w}\right]$. If you omit it, the default is zero. Note that all MPC design routines require $D_{u}=D_{d}=0$.
The last output variable, na, is the order of the augmented system, i.e., $\mathrm{n}_{\mathrm{a}}=\mathrm{n}+\mathrm{n}_{\mathrm{y}}$. It is optional.

Example The following system has 2 states, 3 inputs, and 2 outputs.

```
phi =di ag([0.8, -0.2]);
gam=1 1-1 0;0 2-0.5];
c={0.4 0;0 1.5];
```

Here is the augmentation command, followed by the calculated results:
[phi a, ganm, ca, da, na] =mpcaugss(phi , gam c)
phia $=$

0.8000	0	0	0
0	-0.2000	0	0
0.3200	0	1.0000	0
0	-0.3000	0	1.0000

gama $=$

1. $0000-1.0000 \quad 0$
$\begin{array}{rrr}0 & 2.0000 & -0.5000 \\ 0.4000 & -0.4000 & 0 \\ 0 & 3.0000 & -0.7500\end{array}$
$\mathrm{ca}=$
da $=\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \\ 0 & 0 & 0 & \end{array}$
na $=$

Purpose

Syntax
[cl mod $]=\operatorname{mpccl}(\mathrm{pl}$ ant, model, Kmpc$)$
[cl mod, cmod] $=\operatorname{mpccl}(\mathrm{pl}$ ant, model, Kmpc, tfilter,.. dpl ant, dnodel)

Description

pl ant

Is a model (in step format) representing the plant in the above diagram.

nodel

Is a model (in step format) that is to be used to design the MPC controller block shown in the diagram. It may be the same as plant (in which case there is no "model error" in the controller design), or it may be different.

Knpc

Is a controller gain matrix, which was calculated by the function mpccon.

tfilter

Is a (optional) matrix of time constants for the noise filter and the unmeasured disturbances entering at the plant output. If omitted or set to an empty matrix, the default is no noise filtering and steplike unmeasured disturbances. See the documentation for the function mpcsi mfor more details on the design and proper format of tfilter.

dpl ant

Is a (optional) model (in step format) representing all the disturbances (measured and unmeasured) that affect pl ant in the above diagram. If omitted or set to an empty matrix, the default is that there are no disturbances.

dmodel

Is a (optional) model (in step format) representing the measured disturbances. If omitted or set to an empty matrix, the default is that there are no measured disturbances. See the documentation for the function mpcsi mfor more details on how disturbances are handled when using step-response models.

mpcel

Calculates a model of the closed-loop system, cl mod. It is in the mod format and can be used, for example, with analysis functions such as smpcgai n and smpcpol e, and with simulation routines such as mod2st ep and dl si mmpocl also calculates (as an option) a model of the controller element, cmod.

The closed-loop model, cl mod, has the following state-space representation:

$$
\begin{aligned}
& x_{c l}(k+1)=\Phi_{c \mid} x_{c \mid}(k)+\Gamma_{c \mid} u_{c l}(k) \\
& y_{c l}(k)=C_{c l} x_{c \mid}(k)+D_{c l} u_{c l}(k)
\end{aligned}
$$

where $x_{c l}$ is a vector of n state variables, $u_{c l}$ is a vector of input variables, $y_{c l}$ is a vector of outputs, and $\Phi_{\mathrm{c}}, \Gamma_{\mathrm{c}}, \mathrm{C}_{\mathrm{cl}}$, and D_{c} are matrices of appropriate size. The expert user may want to know the significance of the state variables in x_{c}. They are (in the following order):

- The n_{p} states of the plant (as specified in pl ant),
- The n_{i} state estimates (based on the model specified in model),
- n_{d} integrators that operate on the $\Delta \mathrm{d}$ signal to yield a d signal. If there are no disturbances, these states are omitted.
- n_{u} integrators that operate on the $\Delta \mathrm{w}_{\mathrm{u}}$ signal to yield a w_{u} signal.
- n_{u} integrators that operate on the $\Delta \mathrm{u}$ signal produced by the standard MPC formulation to yield a u signal that can be used as input to the plant and as a closed-loop output.

The closed-loop input and output variables are:

$$
u_{c l}(k)=\left[\begin{array}{c}
r(k) \\
z(k) \\
w_{u}(k) \\
d(k)
\end{array}\right] \quad \text { and } \quad y_{c l}(k)=\left[\begin{array}{c}
y_{p}(k) \\
u(k) \\
y(k \mid k)
\end{array}\right]
$$

where $y(k \mid k)$ is the estimate of the noise-free plant output at sampling period k based on information available at period k. This estimate is generated by the controller element.

The state-space form of the controller model, cmod, can be written as:

$$
\begin{aligned}
& x_{c}(k+1)=\Phi_{c} x_{c}(k)+\Gamma_{c} u_{c}(k) \\
& y_{c}(k)=C_{c} x_{c}(k)+D_{c} u_{c}(k)
\end{aligned}
$$

where

$$
u_{c}(k)=\left[\begin{array}{c}
r(k) \\
y(k) \\
d(k-1)
\end{array}\right] \quad \text { and } \quad y_{c}(k)=u(k-1)
$$

and the controller states are the same as those of the closed loop system except that the n_{p} plant states are not included.

Example Consider the linear system:

$$
\left[\begin{array}{l}
y_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 e^{-3 s}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 e^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 e^{-3 s}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

We build the step response model using the MPC Tool box functions pol y2t fd and tf d 2 st ep .

```
g11=pol y2tfd(12. 8,[16.7 1], 0, 1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18. 9,[21.0 1], 0, 3);
g22=pol y2tfd(-19. 4,[14.4 1], 0, 3);
del t=3; ny=2; tfinal = 60;
model =t fd2step(tfi nal, del t, ny, g11, g21,g12,g22) ;
pl ant =nodel ; % No pl ant/model mi smmtch
```

Now we design the controller. Since there is delay, we use M < P: We specify the defaults for the other tuning parameters, unt and ywt, then calculate the controller gain:

```
P=6; % Predi ction horizon.
M=2; % Nunber of moves (i nput horizon).
yut = ]; %Out put wei ghts (default - unity
% on all outputs). unt=[ ]; % Man. Var wei ghts (default - zero
%on all man. vars).
Kmpc=mpccon( model, yut, uut, M P);
```

Now we can calculate the model of the closed-loop system:
cl mod=mpccl (pl ant, nodel , Kmpc);
You can use the cl osed-loop model to calculate and plot the step response with respect to all the inputs. The appropriate commands are:

```
t end=30;
cl st ep=mod2step(cl mod, tend);
pl ot step(cl step)
```

Since the closed-loop system has $m=6$ inputs and $p=6$ outputs, only one of the plots is reproduced here. It shows the response of the first 4 closed-loop outputs to a unit step in the first closed-loop input, which is the setpoint for y_{1} :

Closed-loop outputs y_{1} and y_{2} are the true plant outputs (noisefree). Output y_{1} goes to the new setpoint quickly with a small overshoot. This causes a small, short-term disturbance in y_{2}. The plots for y_{3} and y_{4} show the required variation in the manipulated variables.

Restriction
See Also
model and pl ant must have been created using the same sampling period.
cnpc, nod2step, step format, mpccon, mpcsimsmpcgai n, smpcpole

Purpose

Calculates MPC controller gain using a model in MPC step format.

Syntax
Description

Kmpc $=$ mpccon(nodel)
Kmpc $=$ mpccon(nodel, yut, unt, M P)
Combines thefollowing variables (most of which are optional and have default
values) to calculate the MPC gain matrix, Kmp.

nodel

is the model of the process to be used in the controller design (in the step format).

The following input variables are optional:

yut

Is a matrix of weights that will be applied to the setpoint tracking errors. If you useyut =[] or omit it, the default is equal (unity) weighting of all outputs over the entire prediction horizon. If you use yut ; [] , it must have n_{y} columns, where n_{y} is the number of outputs. All weights must be ≥ 0.

You may vary the weights at each step in the prediction horizon by including up to P rows in ywt. Then the first row of n_{y} values applies to the tracking errors in the first step in the prediction horizon, the next row applies to the next step, etc.

If you supply only nrow rows, where $1 \leq$ nrow <P, npccon will use the last row to fill in any remaining steps. Thus if you wish the weighting to be the samefor all P steps, you need only specify a single row.

unt

Same format as yut, except that unt applies to the changes in the manipulated variables. If you use unt = [] or omit it, the default is zero weighting. If uwt | [], it must have n_{u} columns, where n_{u} is the number of manipulated variables.

M

There are two ways to specify this variable:

- If it is a scalar, mpccon interprets it as the input horizon (number of moves) as in DMC.
- If it is a row vector containing n_{b} elements, each element of the vector indicates the number of steps over which $\Delta u=0$ during the optimization and cmpc interprets it as a set of n_{b} blocking factors. There may be $1 \leq n_{b} \leq P$ blocking factors, and their sum must be $\leq P$.

If you set $M=1$ or omit it and P; I nf , the default is $M=P$, which is equivalent to $M=0$ enes ($1, P$). The default value for Mis 1 if $\mathrm{P}=\mathrm{nf}$.

P

The number of sampling periods in the prediction horizon. If you set $\mathrm{P}=\mathrm{nf}$ or omit it, the default is $\mathrm{P}=1$. If $\mathrm{P}=\mathrm{nf}$, the prediction horizon is infinite.

If you take the default values for all the optional variables, you get the "perfect controller," i.e., a model-inverse controller. This controller is not applicable when one or more outputs can not respond to the manipulated variables within one sampling period duetotime del ay. In this case, the plant-inverse controller is unrealizable. For nonminimum phase discrete plants, this controller is unstable. To counteract this you can penalize changes in the manipulated variables (variable unt), use blocking (variable M), and/or make $P \gg M$ The model-inverse controller is also relatively sensitive to model error and is best used as a point of reference from which you can progress to a more robust design.

Algorithm

The controller gain is a component of the solution to the optimization problem:

$$
\begin{aligned}
& \operatorname{Minimize} J(k)=\sum_{j=1 i=1}^{p} \sum_{y}\left(y w t_{i}(j)\left[r_{i}(k+j)-y_{i}(k+j)\right]\right)^{2} \\
&+\sum_{j=1 i=1}^{n_{b}} \sum_{\left.u w t_{i}(j) \Delta a_{i}(j)\right)^{2}}^{n_{i}}\left(\lim ^{2}\right.
\end{aligned}
$$

with respect to $\Delta \mathrm{a}_{\mathrm{i}}(\mathrm{j})$ (a series of current and future moves in the manipulated variables), where $y_{i}(k+j)$ is a prediction of output i at a time j sampling periods into the future (relative to the current time, k), which is a function of
$\Delta \hat{u}_{i}(j), r_{i}(k+j)$ is the corresponding future setpoint, and n_{b} is the number of blocks or moves of the manipulated variables.

Example Consider the linear system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 \mathrm{e}^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 \mathrm{e}^{-3 \mathrm{~s}}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 \mathrm{e}^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 \mathrm{e}^{-3 \mathrm{~s}}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

See the mpcol example for the commands that build the model and a simple controller for this process.

Here is a slightly more complex design with blocking and time-varying weights on the manipulated and output variables:

```
P=6; M= 2 4];
unt ={1 0; 0 1];
yut =[ 1 0.1; 0. 8 0.1; 0.1 0.1];
Kmpc=mpccon( model, yut, uut, M P);
tend=30; r={ 1 0];
[ y, u] =mpcsi m(pl ant, model , Kmpc, t end, r );
```

There is no particular rational e for using time varying weights in this case it is only for illustration. The manipulated variables will make 2 moves during the prediction horizon (see value of M above). The unt selection gives u_{1} a unity weight and u_{2} a zero weight for the first move, then switches the weights for the second move. If there had been any additional moves they would have had the same weighting as the second move.

The yut value assigns a constant weight of 0.1 to y_{2}, and a weight that decreases over the first 3 periods to y_{1}. The weights for periods 4 to 6 are the same as for period 3. The resulting closed-loop (servo) response is:

See Also

cmpc, mpccl, mpcsim

Purpose	Determines the type of a matrix and returns information about the matrix.
Syntax:	mpci nfo(mat)
Description	mpci nf o returns information about the type and size of the matrix, mat. The information is determined from the matrix structure. The matrix types include MPC step format, MPC mod format, varying format and constant. mpci nf o returns text output to the screen.
	If thematrix is in MPC step format, the output includes the sampling time used to create the model, number of inputs, number of outputs and number of step response coefficients; it also indicates which outputs are stable and which outputs are integrating.
	If the matrix is in MPC mod format, the output includes the sampling time used to create the model, number of states, number of manipulated variable inputs, number of measured disturbances, number of unmeasured disturbances, number of measured outputs and number of unmeasured outputs.
	For a matrix in varying format, as formed in mod2f $r s p$, the number of independent variable values, and the number of rows and number of columns of each submatrix are output.
	For a constant matrix, the text output consists of the number of rows and number of columns.
Examples	1 MPC step format: After running the mod2st ep example mpci nf o(pl ant) returns:
	This is a matrix in MPC Step format. sampling time $=1.5$ number of inputs $=3$ number of outputs $=4$ number of step response coefficients $=3$ All outputs are stable.

2 MPC mod format: After running the ss2mød example mpci in o(pnod) returns:

```
This is a matrix in MPC Mbd format.
    mino = [\begin{array}{llllllll}{2 3 1 1 1 1 0 ]}\end{array}]
sampl ing time = 2
number of states = 3
number of mani pul ated variable inputs = 1
number of measured di sturbances = 1
number of unmeasured di sturbances = 1
number of measured outputs = 1
number of unmeasured outputs =0
```

3 varying format: After running the mod2f r sp example mpci $n f$ o(eyef $r s p$) returns:
varying: 30 pts 2 rows 2 cols
See Also mod, st ep, mod2frsp, varying format

Purpose

Syntax
yp = mpcsi nt pl ant, model , Kmpc, tend, r)
[yp, $u, y m$] $=$ mpcsimpl ant, model , Kmpc, tend, r, usat , . . . tfilter, dpl ant, dmodel, dstep)

Description

mpcsi mprovides a convenient way to simulate the performance of the type of system shown in the above diagram. Measurement noise can be simulated by treating it as an unmeasured disturbance. The required input variables are as follows:

pl ant

Is a model in the MPC step format that is to represent the plant.

nodel

Is a model in the MPC step format that is to be used for state estimation in the controller. In general, it can be different from pl ant if you want to simulate the effect of plant/controller model mismatch. Note, however, that model should be the same as that used to calculate Kmpc.

Knpc

Is the MPC controller gain matrix, usually calculated using the function mpccon.

If you set Kmpc to an empty matrix, mpcsi mwill do an open-loop simulation. Then the inputs to the plant will ber (which must be set to the vector of manipulated variables in this case) and dst ep.

tend

Is the desired duration of the simulation (in time units).
r
Is normally a setpoint matrix consisting of N rows and n_{y} columns, where n_{y} is the number of output variables, y :

$$
r=\left[\begin{array}{cccc}
r_{1}(1) & r_{2}(1) & \ldots & r_{n_{y}}(1) \\
r_{1}(2) & r_{2}(2) & \ldots & r_{n_{y}}(2) \\
\vdots & \vdots & \ldots & \vdots \\
r_{1}(N) & r_{2}(N) & \ldots & r_{n_{y}}(\mathrm{~N})
\end{array}\right]
$$

where $r_{i}(k)$ is the setpoint for output j at time $t=k T$, and T is the sampling period (as specified in the step format of pl ant and model). If tend $>N T$, the setpoints vary for the first N periods in the simulation, as specified by r, and arethen held constant at the values given in thelast row of r for the remainder of the simulation.

In many simulations one wants the setpoints to be constant for the entire time, in which caser need only contain a single row of n_{y} values.
If you set $r=[\quad]$, the default is a row of n_{y} zeros.
For open-loop simulations, r specifies the manipulated variables and must contain n_{u} columns.

The following input variables are optional. In general, setting one of them equal to an empty matrix causes mpcsi mto use the default value, which is given in the description.

usat

Is a matrix giving the limits on the manipulated variables. Its format is as follows:

$$
\begin{aligned}
\text { usat } & =\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
u_{\min , 1}(1) & \ldots & u_{\min , n_{u}}(1) \\
u_{\min , 1}(2) & \ldots & u_{\min , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\min , 1}(N) & \ldots & u_{\min , n_{u}}(N)
\end{array}\right]} \\
{\left[\begin{array}{ccc}
u_{\max , 1}(1) & \ldots & u_{\max , n_{u}}(1) \\
u_{\max , 1}(2) & \ldots & u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\max , 1}(N) & \ldots & u_{\max , n_{u}}(N)
\end{array}\right]} \\
{\left[\begin{array}{ccc}
\Delta u_{\max , 1}(1) & \ldots & \Delta u_{\max , n_{u}}(1) \\
\Delta u_{\max , 1}(2) & \ldots & \Delta u_{\max , n_{u}}(2) \\
\vdots & \ldots & \Delta u_{\max , n_{u}}(N)
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

Note that it contains three matrices of N rows. N may be different than that for the setpoint matrix, r, but the idea is the same: the saturation limits will vary for the first N sampling periods of the simulation, then be held constant at the values given in the last row of us at for the remaining periods (if any).

The first matrix specifies the lower bounds on the n_{u} manipulated variables. For example, $u_{\text {min }, j}(k)$ is the lower bound for manipulated variablej at time $t=$ kT in the simulation. If $\mathrm{u}_{\text {min } \mathbf{j}}(\mathrm{k})=-\mathrm{inf}$, manipulated variable j will have no lower bound at $\mathrm{t}=\mathrm{kT}$.

The second matrix gives the upper bounds on the manipulated variables. If $u_{\text {max,j}}(\mathrm{k})=\mathrm{inf}$, manipulated variable j will have no upper bound at $\mathrm{t}=\mathrm{kT}$.
The lower and upper bounds may beeither positiveor negative (or zero) as long as $u_{\text {min }, j}(k) \leq u_{\text {max }, j}(k)$.

The third matrix gives the limits on the rate of change of the manipulated variables. In other words, mpcsi mwill force $\left|u_{j}(k)-u_{j}(k-1)\right| \leq \Delta u_{\max , j}(k)$. The limits on the rate of change must be nonnegative.

The default is no saturation constraints, i.e., all the $u_{\min }$ values will be set toinf, and all the $u_{\text {max }}$ and $\Delta u_{\text {max }}$ values will be set to inf.

Note: Saturation constraints in mpcsi mare enforced by simply clipping the manipulated variable moves so that they satisfy all constraints. This is a nonoptimal sol ution that, in general, will differ from the results you would get using the ul i mvariable in cmpc.

tfilter

Is a matrix of time constants for the noise filter and the unmeasured disturbances entering at the plant output. The first row of n_{y} elements gives the noise filter time constants and the second row of n_{y} elements gives the time constants of the lags through which the unmeasured disturbance steps pass. If tfilter only contains one row, the unmeasured disturbances are assumed to be steps. If you set tfilter $=[$] or omit it, the default is no noise filtering and steplike unmeasured disturbances.

dpl ant

Is a model in MPC step format representing all the disturbances (measured and unmeasured) that affect pl ant in the above diagram. If dpl ant is provided, then input dst ep is al so required. For output step disturbances, set dpl ant $=[$]. The default is no disturbances.

dnodel

Is a model in MPC step format representing the measured disturbances. If dnodel is provided, then input dst ep is also required. If there are no measured disturbances, set dmodel=[]. For output step disturbances, set dmodel=[]. If there are both measured and un- measured disturbances, set the columns of dnodel corresponding to the unmeasured disturbances to zero. The default is no measured disturbances.

dstep

Is a matrix of disturbances to the plant. F or output step disturbances (dpl ant =[] and dmodel =[]), the format is the same as for r. F or disturbances through step-response models (dpl ant only or both dpl ant and dmodel nonempty), the format is the same as for r, except that the number of columns is n_{d} rather than n_{y}. The default is a row of zeros.

Note: You may use a different number of rows in the matrices r, usat and dst ep, should that be appropriate for your simulation.

The calculated outputs are as follows (all but yp are optional):

yp

Is a matrix containing M rows and n_{y} columns, where $M=r$ ound(t end/ del t 2) +1 and del t 2 is the sampling time. The first row will contain the initial condition, and row $\mathrm{k}-1$ will give the values of the plant outputs, y (see above diagram), at timet $=k T$.

u

Is a matrix containing the same number of rows as yp and n_{u} columns. The time corresponding to each row is the same as for yp. The elements in each row are the values of the manipulated variables, u (see above diagram).

ym

Is a matrix of the same structure as yp, containing the values of the predicted outputs from the state estimator in the controller. ymwill, in general, differ from yp if model ; pl ant and/or there are unmeasured disturbances. The prediction includes the effect of the most recent measurement, i.e., $y(k \mid k)$.

Examples

Consider the linear system:

$$
\left[\begin{array}{l}
y_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 e^{-3 s}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 e^{-7 s}}{10.9 \mathrm{~s}+1} & \frac{-19.4 e^{-3 s}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

The following statements build the model and calculate the MPC controller gain:

```
g11=pol y2tfd(12. 8,[16.7 1],0, 1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18.9,[21.0 1], 0, 3);
g22=pol y2tfd(-19. 4,[ 14.4 1], 0, 3);
del t=3; ny=2; tfinal =90;
nodel =t fd2st ep( tfinal, del t, ny, g11, g21, g12, g22) ;
pl ant =model ;
P=6; M=2;
yut=[ ]; unt =[ 1 1];
Kmpc=mpccon(i nod, yut, unt,M P);
```

Simulate and plot the closed-loop performancefor a unit step in the setpoint for y_{2}, occurring at $t=0$.

```
tend=30; r=[0 1];
```

[y, u] =mpcsi m(pl ant, model , Kmpc, tend, r) ; pl ot all ($y, u, d e l t$), pause

Manipulated Variables

Try a pulse change in the disturbance that adds to u_{1} :
r=[]; usat =[]; tfilter =[]; dmodel =[];
dpl ant $=\mathrm{pl}$ ant ;
dstep=[1 0; 0 0];
[y, u] =mpcsi mpl ant, model , Kmpc, tend, r, usat, t fil ter, . . . dpl ant, dnodel, dstep) ;
pl ot all ($y, u, d e l t$), pause

For the same disturbance as in the previous case, limit the rates of change of both manipulated variables.

```
usat=[-inf -inf inf inf 0.1 0.05];
```

$[y, u]=m p c s i \operatorname{lopl}$ ant, model , Kmpc, tend, r, usat, t fil ter, . . .

> dpl ant, dmodel, dstep); pl ot all (y, u, del t), pause

Restriction

See Also

Initial conditions of zero are used for all the variables. This simulates the condition where all variables represent a deviation from a steady-state initial condition.
pl ot al I, pl ot each, cmpc, npccl, mpccon

Purpose

Description

Model predictive controller for simulating closed-loop systems with hard bounds on manipulated variables and/or controlled variables using linear models in the MPC step format for nonlinear plants represented as Simulink S-functions.
nl cmpc is a Simulink S-function block and can be invoked by typing nl mpcl i b at the MATLAB prompt. Its usage is identical to other Simulink blocks. The input to nl cmpc includes both the variables controlled by nl cmpc and measured disturbances. The first n_{y} elements of the input are treated as the controlled variables while the rest is taken as the measured disturbances. The output from nl cmpc are the values of the manipulated variables. Initial conditions for the manipulated variables and the measured disturbances must be specified. The controlled variables sent to nl cmpc and the manipulated variables returned by nl cmpc are actual variables; they are not deviation variables.

Because of the limit on the number of masked variables that can be specified for a Simulink block, model and dmodel are put together as "one" variable, r, yut, and unt as "one" variable, and yl i mand ul i mas "one" variable. mand p should be entered as one row vector. u0 and d0 should al so be entered as one row vector. The required input variables are as follows:

nodel pd

Equals [nodel dnodel]. model is a linear model in the MPC step format that is to be used for state estimation in the controller. In general, it is a linear approximation of the nonlinear plant. dmodel is a model in MPC step format representing the effect of the measured disturbances. The default is no measured disturbances. Note that the truncation time for model and dnodel must be the same and the number of outputs for nodel and dmodel must be the same.

ryunt

Equals [r yut unt]. r is a setpoint matrix consisting of N rows and n_{y} columns, where n_{y} is the number of output variables, y :

$$
r=\left[\begin{array}{cccc}
r_{1}(1) & r_{2}(1) & \ldots & r_{n_{y}}(1) \\
r_{1}(2) & r_{2}(2) & \ldots & r_{n_{y}}(2) \\
\vdots & \vdots & \ldots & \vdots \\
r_{1}(N) & r_{2}(N) & \ldots & r_{n_{y}}(N)
\end{array}\right]
$$

Where $r_{i}(k)$ is the setpoint for output i at time $t=k T$, and T is the sampling period (as specified in the step format of model). If the simulation time is larger than NT, the setpoints vary for the first N periods in the simulation, as specified by r, and are then held constant at the values given in the last row of r for the remainder of the simulation. In many simulations one wants the setpoints to be constant for the entire time, in which case r need only contain a single row of n_{y} values.

yut

Must have n_{y} columns, where n_{y} is the number of outputs. All weights must be ≥ 0.

You may vary the weights at each step in the prediction horizon by including up to P rows in yut. Then the first row of n_{y} values applies to the tracking errors in the first step in the prediction horizon, the next row applies to the next step, etc. See mpccon for details on the form of the optimization objective function.

If you supply only nrow rows, where $1 \leq$ nrow $<\mathrm{P}, \mathrm{nl}$ cmpc will use the last row to fill in any remaining steps. Thus if you wish the weighting to be the same for all P steps, you need only specify a single row.

unt

Has the same format as yut, except that unt applies to the changes in the manipulated variables. If unt ; [], it must have n_{u} columns, where n_{u} is the number of manipulated variables.

Notice that the number of rows for r, yut, and unt should be the same. If not, one can enter the variable as par part (r, yut, uwt). The function par part
appends extra rows to r , yut, and/or unt so that they have the same number of rows. The default is $\mathrm{r}=\mathrm{y} 0$, where y 0 is the initial condition for the output, equal (unity) weighting of all outputs over the entire prediction horizon and zero weighting of all input.

mp

Equals [M P]. Pequals the last element of M. There are two ways to specify M If it is a scalar, nl cmpc interprets it as the input horizon (number of moves) as in DMC; if it is a row vector containing n_{b} el ements, each element of the vector indicates number of the steps over which $\Delta u(k)=0$ during the optimization and nl cmpc interprets it as a set of n_{b} blocking factors. There may be $1 \leq \mathrm{n}_{\mathrm{b}} \leq \mathrm{P}$ blocking factors, and their sum must be $\leq \mathrm{P}$. If you set $\mathrm{MH} \quad]$, the default is $M=P$, which is equivalent to $M=0$ enes ($1, P$) . P is the number of sampling periods in the prediction horizon.

yul im

Equals [yl i mul i m. ul i mis a matrix giving the limits on the manipulated variables. Its format is as follows:

$$
\left.\begin{array}{rl}
\operatorname{ulim}= & {\left[\left[\begin{array}{ccc}
u_{\min , 1}(1) & \ldots & u_{\min , n_{u}}(1) \\
u_{\min , 1}(2) & \ldots & u_{\min , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\min , 1}(N) & \ldots & u_{\min , n_{u}}(N)
\end{array}\right]\right.} \\
& {\left[\begin{array}{ccc}
u_{\max , 1}(1) & \ldots & u_{\max , n_{u}}(1) \\
u_{\max , 1}(2) & \ldots & u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\max , 1}(N) & \ldots & u_{\max , n_{u}}(N)
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
\Delta u_{\max , 1}(1) & \ldots & \Delta u_{\max , n_{u}}(1) \\
\Delta u_{\max , 1}(2) & \ldots & \Delta u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
\Delta u_{\max , 1}(N) & \ldots & \Delta u_{\max , n_{u}}(N)
\end{array}\right]}
\end{array}\right]
$$

Note that it contains three matrices of N rows. In this case, the limits on N are $1 \leq N \leq n_{b}$, where n_{b} is the number of times the manipulated variables are to change over the input horizon. If you supply fewer than n_{b} rows, the last row is repeated automatically.

The first matrix specifies the lower bounds on the n_{u} manipulated variables. For example, $u_{\min , j}(2)$ is the lower bound for manipulated variable j for the second move of the manipulated variables (where the first move is at the start of the prediction horizon). If $u_{\text {min }}, \mathrm{j}(\mathrm{k})=-\mathrm{inf}$, manipulated variablej will have no lower bound for that move.

The second matrix gives the upper bounds on the manipulated variables. If $u_{\text {max, },}(k)=i n f$, manipulated variablej will have no upper bound for that move.
The lower and upper bounds may beeither positiveor negative (or zero) as long as $\mathrm{u}_{\text {min }, \mathrm{j}}(\mathrm{k}) \leq \mathrm{u}_{\text {max, }} \mathrm{j}(\mathrm{k})$.
The third matrix gives the limits on the rate of change of the manipulated variables. In other words, cmpc will force| $u_{j}(k)-u_{j}(k-1) \mid \leq \Delta u_{\text {max }, j}(k)$. The limits on the rate of change must be nonnegative and finite. If you want it to be unbounded, set the bound to a large number (but not too large - a value of 10^{6} should work well in most cases).
yl i m has the same format as ul i m but for the lower and upper bounds of the outputs. The first row applies to the first point in the prediction horizon.

Note that the number of rows for yl i mand ul i mshould be the same. If the number of rows for yl i mand ul i mdiffers, one can use par part (yl i m ul im). Thefunction par part appends extra rows to yl i mor ul i mso that they have the same number of rows. If you set yul i $m=[\quad]$, then $u_{\min }=-i n f, u_{\max }=i n f, \Delta u_{\max }$ $=10^{6}, y_{\text {min }}=-$ inf and $y_{\max }=$ inf.

tfilter

Is a matrix of time constants for the noise filter and the unmeasured disturbances entering at the plant output. The first row of n_{y} elements gives the noise filter time constants and the second row of n_{y} elements gives thetime constants of the lags through which the unmeasured disturbance steps pass. If tfilter only contains one row, the unmeasured disturbances are assumed to be steps. If you set tfilter = [], no noise filtering and steplike unmeasured disturbances are assumed.

ud0

Equals [$u 0$ d0]. u0 are initial values of the manipulated variables arranged in a row vector having n_{u} elements; n_{u} is the number of the manipulated variables computed by nl cmpc. d0 are initial values of the measured disturbances arranged in a row vector having n_{d} elements; n_{d} is the number of the measured disturbances. The default is $u 0=0$ and $d 0=0$.

Notes	- Initial conditions for the manipulated variables that are calculated by nl cmpc are specified through nl cmpc while initial conditions for the controlled variables are specified through the S-function for the nonlinear plant. - You may use a different number of rows in the matrices r, ul i mand yl i m should that be appropriate for your simulation. - The ul i mconstraints used here are fundamentally different from the us at constraints used in the nl mocsi mblock. The ul i mconstraints are defined relative to the beginning of the prediction horizon, which moves as the simulation progresses. Thus at each sampling period, k, the ul i mconstraints apply to a block of calculated moves that begin at sampling period k and extend for the duration of the input horizon. The usat constraints, on the other hand, are relative to the fixed point $t=0$, the start of the simulation. - For unconstrained problems, nl cmpc and nl mpcsi mshould give the same results. The latter will be faster because it uses an analytical solution of the QP problem, whereas nl cmpc solves it by iteration.

Example
See Also cmpc, nl mpcsi m

Purpose

Description

Model predictive controller for simulating closed-loop systems with saturation constraints on the manipulated variables using linear models in the MPC step format for nonlinear plants represented as Simulink S-functions.
nl mpcsi mis a Simulink S-function block and can be invoked by typing nl mpcl i b at the MATLAB prompt. Its usage is identical to other Simulink blocks. The input to nl mpcsi mincludes both the variables controlled by nl mpssi mand measured disturbances. The first n_{y} elements of the input are treated as the controlled variables while the rest is taken as the measured disturbances. The output from nl mpcsi mare the values of the manipulated variables. Initial conditions for the manipulated variables and the measured disturbances must be specified. Both the controlled variables sent to nl mpcsi m and the manipulated variables returned by nl mpcsi mare the actual variables; they are not deviation variables.

Because of the limit on the number of masked variables that can be specified for a Simulink block, model and dnodel are put together as one variable. u0 and d0 should be entered as one row vector. The required input variables are as follows:

nodel pd

Equals [nodel dmodel]. model is a linear model in the MPC step format that is to be used for state estimation in the controller. In general, it is a linear approximation for the nonlinear plant. Note, however, that nodel should be the same as that used to calculate Kmpc. dnodel is a model in MPC step format representing the measured disturbances. If dmodel = [], the default is no measured disturbances. Note that the truncation time for model and dmodel should be the same and the number of outputs for model and dmodel should be the same.

Knpc

Is the MPC controller gain matrix, usually calculated using the function mpccon.

r

Is a setpoint matrix consisting of N rows and n_{y} columns, where n_{y} is the number of controlled variables, y :

$$
r=\left[\begin{array}{cccc}
r_{1}(1) & r_{2}(1) & \ldots & r_{n_{y}}(1) \\
r_{1}(2) & r_{2}(2) & \ldots & r_{n_{y}}(2) \\
\vdots & \vdots & \ldots & \vdots \\
r_{1}(N) & r_{2}(N) & \ldots & r_{n_{y}}(N)
\end{array}\right]
$$

Where $r_{i}(k)$ is the setpoint for output i at timet F k , and T is the sampling period (as specified in the step format of model). If the simulation time is larger than NT, the setpoints vary for the first N periods in the simulation, as specified by r, and are then held constant at the values given in the last row of r for the remainder of the simulation.

In many simulations one wants the setpoints to be constant for the entire time, in which caser need only contain a single row of n_{y} values.
Note that r is the actual setpoint. If you set $r=\{]$, the default is yo.

usat

Is a matrix giving the saturation limits on the manipulated variables. Its format is as follows:

$$
\left.\begin{array}{rl}
\text { usat }= & {\left[\begin{array}{ccc}
u_{\min , 1}(1) & \ldots & u_{\min , n_{u}}(1) \\
u_{\min , 1}(2) & \ldots & u_{\min , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\min , 1}(N) & \ldots & u_{\min , n_{u}}(N)
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
u_{\max , 1}(1) & \ldots & u_{\max , n_{u}}(1) \\
u_{\max , 1}(2) & \ldots & u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\max , 1}(N) & \ldots & u_{\max , n_{u}}(N)
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
\Delta u_{\max , 1}(1) & \ldots & \Delta u_{\max , n_{u}}(1) \\
\Delta u_{\max , 1}(2) & \ldots & \Delta u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
\Delta u_{\max , 1}(N) & \ldots & \Delta u_{\max , n_{u}}(N)
\end{array}\right]}
\end{array}\right] .
$$

Note that it contains three matrices of N rows. N may be different from that for the setpoint matrix, r, but the idea is the same: the saturation limits will vary for the first N sampling periods of the simulation, then be held constant at the values given in the last row of usat for the remaining periods (if any).
The first matrix specifies the lower bounds on the n_{u} manipulated variables. For example, $u_{\text {min }, j}(k)$ is the lower bound for manipulated variable j at time $t=$ kT in the simulation. If $\mathrm{u}_{\min , \mathrm{j}}(\mathrm{k})=-\mathrm{inf}$, manipulated variable j will have no lower bound at $\mathrm{t}=\mathrm{kT}$.

The second matrix gives the upper bounds on the manipulated variables. If $u_{\text {max }, j}(k)=i n f$, manipulated variable j will have no upper bound at $t=k T$.

The lower and upper bounds may beeither positiveor negative (or zero) as long as $\mathrm{u}_{\text {min }, \mathrm{j}}(\mathrm{k}) \leq \mathrm{u}_{\text {max, }}(\mathrm{k})$.

The third matrix gives the limits on the rate of change of the manipulated variables. In other words, mpcsi mwill force| $\mathrm{u}_{\mathrm{j}}(\mathrm{k})-\mathrm{u}_{\mathrm{j}}(\mathrm{k}-1) \mid \leq \Delta \mathrm{u}_{\text {max, }}(\mathrm{k})$. The limits on the rate of change must be nonnegative.

If usat $=[\quad]$, then all the $u_{\text {min }}$ values will be set to -inf, and all the $u_{\max }$ and $u_{\text {max }}$ values will be set to inf.

Note: Saturation constraints are enforced by simply dipping the manipulated variable moves so that they satisfy all constraints. This is a nonoptimal solution that, in general, will differ from the results you would get using the ul i mvariable in cmpc or nl cmpc.

tfilter

Is a matrix of time constants for the noise filter and the unmeasured disturbances entering at the plant output. The first row of n_{y} elements gives the noise filter time constants and the second row of n_{y} el ements gives the time constants of the lags through which the unmeasured disturbance steps pass. If tfilter only contains one row, the unmeasured disturbances are assumed to be steps. If you set tfilter = [], no noise filtering and steplike unmeasured disturbances are assumed.

udO

Equals [u0 d0]. u0 are initial values of the manipulated variables arranged in a row vector having n_{u} elements; n_{u} is the number of the manipulated variables computed by nl mpcsi md d are initial values of the measured disturbances arranged in a row vector having n_{d} elements; n_{d} is the number of the measured disturbances. The default is u0 $=0$ and d0 $=0$.

Note: You may use a different number of rows in the matrices r and us at, should that be appropriate for your simulation.

Examples

Let us now demonstrate the use of the controller nl mpcsi m Since the plant used in Example 1 is linear, using mpcsi mwould be much faster. The point, however, is to show how masked variables are specified for nl mpcsi m

1 The plant is linear with two inputs and two outputs. It is represented by

$$
\begin{aligned}
\frac{\mathrm{dx}}{\mathrm{dt}} & =\left[\begin{array}{cc}
-1.2 & 0 \\
0 & -\frac{1}{1.5}
\end{array}\right] x+\left[\begin{array}{c}
0.2 \\
1
\end{array}\right] u+\left[\begin{array}{c}
50 \\
0
\end{array}\right] \\
y & =x
\end{aligned}
$$

The Simulink S-function for this plant is in mpcpl ant. m The nominal steady-state operating condition is y0 $=[58.31 .5]$ and $u 0=[1001]$. The Simulink block to simulate this plant using nl mpcsi mis in nl mpcdmi. mand shown in Figure 1-1.

Figure 1-1 Simulink Block for Example 1
The following statements build the step response model and specify the parameter values. Note that model does not equal the plant model stored in
mpcpl ant. m The important thing to notice is that both r and usat are actual variables. They are not deviation variables.

```
g11=pol y(0.4,[1 2]);
g21=pol y2tfd(0,1);
g12=pol y2tfd(0, 1);
g22=pol y2tfd(1,[1 1]);
tfinal =8;
del t=0. 2;
nout =2;
model =t fd2st ep(tfinal, del t, nout, g11, g21,g12,g22) ;
yut =[ 1 1];
uut =[ 0 0];
M=4;
P=10;
r=[68.3 2];
usat={100 1 200 3 200 200];
tfilter=[ ];
Kmpc = mpccon(model, yut, uut,M P);
dmodel = [ ];
```

There are two ways to simulate the closed loop system. We can set the simulation parameters and click on Start under Simulation or via the following statements.

```
pl ant ='nl mpcdmi'; y0=[ 58.3 1. 5];
u0=[100 1];
tfsim=2;
tol =[ 1e-3];
minstep=[ ];
maxstep=[ ];
[t,yu]=gear(pl ant,tfsim[y0 u0],[tol, mi nstep, maxstep]);
```

Figure 1-2 shows the response for the setpoint change.

Figure 1-2 Output responses for a setpoint change for Example 1
2 The plant is the paper machine headbox discussed in the section, "Application: Paper Machine Headbox Control" in Chapter 3. The nonlinear plant model is represented as a Simulink S-function and is in pap_mach. m The plant has two inputs, three outputs, four states, one measured disturbance, and one unmeasured disturbance. All these variables are zero at the nominal steady-state. Since the model for nl mocsi mmust be linear, we linearize the nonlinear plant at the nominal steady-state to obtain a linear model. Since the model is simple, we can linearize it analytically to obtain A, B, C, and D.
The Simulink block to simulate this nonlinear plant using nl mpcsi mis in nl mpcdm2. mand shown in Figure 1-3.

Figure 1-3 Simulink Block for Example 2
The following statements build the step response model and specify the parameter values.

```
A=[-1.93 0 0 0; . 394 -. 426 0 0; 0 0 -. 63 0; . 82 -. }78
    413 -. 426];
B=[1.274 1.274 0; 0 0 0; 1. 34 -. 65 . 203; 0 0 0];
C=[0 1 0 0; 0 0 1 0; 0 0 0 1];
D=zeros(3,3);
% Di scretize the linear model and save in MDD form
dt =2;
[ PH|, GAM =c2dmp( A, B, dt );
mi nf o=[ dt, 4, 2, 1, 0, 3, 0];
i mod=ss2mod(PH , GAM C, D, mi nf o);
% Store pl ant model and measured di sturbance model in MPC
%step format
```

```
[ model, dmodel ] =nod2st ep(i mod, 20);
m}=5\mathrm{ ;
p=20;
yut =[ 1 0 5]; % unequal wei ghting of y1 and y3, no control
% of y2
unt =[ 1 1]; % Equal wei ghting of u1 and u2
ulim=-10-10 10 10 2 2]; % Constraints on u
ylimF ]; % No constraints on y
usat =ul i m
tfilter=[ ];
y0=[\begin{array}{lll}{0}&{0}&{0}\end{array}]
u0=[0 0];
r={ 0 0 0];
Kmpc=npccon( model, yut, uut, M P);
```

Figure 1-4 shows the output responses for a unit-step measured disturbance $\mathrm{Np}=1$ and a step unmeasured disturbance with $\mathrm{Nw}=5$.

Figure 1-4 Output responses for a unit-step measured disturbance $N p=1$ and a step unmeasured disturbance $\mathrm{Nw}=5$

Purpose

Syntax

Description

Restriction

See Also addnd, addmod, addund, appnod, ser nod

Purpose

Syntax \quad pl otall (y, u) pl otall $(\mathrm{y}, \mathrm{u}, \mathrm{t})$

Description

Plots outputs and manipulated variables from a simulation, all on one "page."

Input variables y and u are matrices of outputs and manipulated variables, respectively. Each row represents a sample at a particular time. Each column shows how a particular output (or manipulated) variable changes with time.

Input variablet is optional. If you supply it as a scalar, pl ot al I interprets is as the sampling period, and calculates the time axis for the plots accordingly. It can also be a column vector, in which case it must have the same number of rows as y and u and is interpreted as the times at which the samples of y and u were taken. If you do not supply t , pl ot al I uses a sampling period of 1 by default.
pl ot al I plots all the outputs on a single graph. If there are multiple outputs that have very different numerical scales, this may be unsatisfactory. In that case, use pl ot each.
pl ot al I plots all the manipulated variables in "stairstep" form (i.e., assuming a zero-order hold) on a single graph. Again, pl ot each may be the better choice if scales are very different.

Example output: (mpccon example)

Manipulated Variables

Purpose Plots outputs and manipulated variables from a simulation on separategraphs, up to four per page.
Syntax
pl ot each(y)
pl ot each (y, u)
pl ot each([], u)
pl ot each(y, [],t)
pl ot each([], u,t)
pl ot each ($\mathrm{y}, \mathrm{u}, \mathrm{t}$)
Description
Input variables y and u are matrices of outputs and manipulated variables, respectively. Each row represents a sample at a particular time. E ach column shows how a particular output (or manipulated) variablechanges with time. As shown above, you may supply both y and u, or omit either one of them.
Input variablet is optional. If you supply it as a scalar, pl ot each interprets is as the sampling period, and calculates the time axis for the plots accordingly. It can also be a column vector, in which case it must have the same number of rows as y and u and is interpreted as the times at which the samples of y and u were taken. If you do not supply t , pl ot each uses a sampling period of 1 by default.
pl ot each plots the manipulated variables in "stairstep" form (i.e., assuming a zero-order hold).

Example output: (mpccon example)

See Also
plotall, pl ot frsp, pl ot step

Purpose

Syntax pl otfrsp(vmat)
 pl otfrsp(vnat, out, in)

Description vmat is a varying matrix which contains the data to be plotted.
Let $F(\omega)$ denote the matrix (whose entries are functions of the independent variable ω) whose sampled values $F\left(\omega_{1}\right), \ldots, F\left(\omega_{N}\right)$ are contained in vmat.
pl ot $f r s p(v m a t)$ will generate Bode plots of all elements of $F(\omega)$.
Optional inputs out and in are row vectors which specify the row and column indices respectively of a submatrix of $F(\omega)$. pl ot $f r s p$ will then generate Bode plots of the elements of the specified submatrix of $F(\omega)$.

Example Output: (nod2f rsp example)

See Also
nod2frsp, varying format

Purpose \quad Plots multiple step responses as calculated by mod2st ep, ss2st ep or tf d2st ep.

Syntax pl otstep(pl ant)
 pl otstep(pl ant, opt)

Description
pl ant is a step-response matrix in the MPC step format created by mod2st ep, ss2step or tfd2step.
opt is an optional scalar or row vector that allows you to select the outputs to be plotted. If you omit opt, pl ot st ep plots every output. If, for example, pl ant contains results for 6 outputs, setting opt $=[1,4,5]$ would cause only y_{1}, y_{4} and y_{5} to be plotted.

Example output: (t f d2st ep example)

u2 step response : y2

See Also
i mp2step, mod2step, step format, pl ot al I, pl ot each, pl ot frsp, ss2step, tfd2step

Purpose	Determine the impulse response coefficients for a multi-input single-output
system via Partial Least Squares (PLS).	

Syntax

Description

Example

$$
\begin{aligned}
{[\text { thet } a, w, c w, ~ s s q d i f, y r e s] } & =p l \operatorname{sr}(x r e g, y r e g, ~ n i ~ n p u t, ~ I v) \\
{[\text { thet } a, w, c w, ~ s s q d i f, y r e s] } & =\text { pl sr(xreg, yreg, ni nput, lv, pl ot opt })
\end{aligned}
$$

Given a set of regression data, xreg and yr eg, the impulse response coefficient matrix, t het a, is determined via PLS. Col umn i of t het a corresponds to the impulse response coefficients for input i . Only a single output is allowed. The number of inputs, ni nput, and the number of latent variables, I v, must be specified.

Optional output wis a matrix of dimension n (number of impulse response coefficients) by I v consisting of orthogonal column vectors maximizing the cross variance between input and output. Column vector cw (optional) contains the coefficients associated with each orthogonal vector for calculating thet a (t het $a=w * c w$).

Optional output ssqdi f is an I v-by-2 matrix containing the percent variances captured by PLS. The first column contains information for the input; the second column for the output. Rowi of ssqdi f gives a measure of the variance captured by using the first i latent variables.

The output residual or prediction error (yres) is also returned (optional).
No plot is produced if pl ot opt is equal to 0 , which is the default; a plot of the actual output and the predicted output is produced if pl ot opt $=1$; two plots plot of actual and predicted output, and plot of output residual - are produced for pl ot opt $=2$.

Consider the following two-input single-output system:

$$
y(s)=\left[\frac{5.72 e^{-14 s}}{60 s+1} \frac{1.52 e^{-15 s}}{25 s+1}\right]\left[\begin{array}{l}
u_{1}(s) \\
u_{2}(s)
\end{array}\right]
$$

Load the input and output data. The input and output data were generated from the above transfer function and random zero-mean noi se was added to the output. Sampling time of 7 minutes was used.

I oad pl srdat;

Put the input and output data in a form such that they can be used to determine the impulse response coefficients. 30 impulse response coefficients (n) are used.

```
n = 30;
[xreg,yreg] = wrtreg(x,y,n);
```

Determine the impulse response coefficients via pl sr using 10 latent variables. By specifying pl ot opt $=2$, two plots - plot of predicted output and actual output, and pl ot of the output residual (or predicted error) - are produced.

```
ni nput = 2;
I v = 10;
pl ot opt = 2;
thet a = pl sr(xreg, yreg, ni nput,l v, pl ot opt );
```


Output Residual or Prediction Error

Use a new set of data to validate the impulse model.
[newxreg, newyreg] = wrtreg(newx, newy, n) ; yres = val idmod(newxreg, newyreg, thet a, pl ot opt);

Convert the impulse model toa step model to be used in MPC design. Sampling time of 7 minutes was used in determining the impulse model. Number of outputs (1 in this case) must be specified.

```
nout = 1;
del t = 7;
model = i mp2step(del t, nout,thet a);
```

Plot the step response coefficients.
pl ot step(nodel)

See Also
nh r, val i dmod, wrtreg

poly2tfd, poly format

Purpose

Syntax

Description

pol y2t fd converts a transfer function (continuous or discrete) from the standard MATLAB poly format into the MPC tf format.
$g=$ pol $y 2 t f d($ num den $)$
$\mathrm{g}=\mathrm{pol} \mathrm{y} 2 \mathrm{tfd} \mathrm{d}$ (num den, delt, del ay)
Consider a continuous-time (Laplace domain) transfer function such as

$$
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{b}_{0} \mathrm{~s}^{\mathrm{n}}+\mathrm{b}_{1} \mathrm{~s}^{\mathrm{n}-1}+\ldots+\mathrm{b}_{n}}{\mathrm{a}_{0} \mathrm{~s}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{~s}^{\mathrm{n}-1}+\ldots+\mathrm{a}_{n}}
$$

or a discrete-time transfer function such as

$$
G(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{n} z^{-n}}{a_{0}+a_{1} z^{-1}+\ldots+a_{n} z^{-n}}
$$

where z is the forward-shift operator. Using the MATLAB poly format, you would represent either of these as a numerator polynomial and a denominator polynomial, giving the coefficients of the highest-order terms first:

$$
\begin{aligned}
& \text { num }=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{n}
\end{array}\right] ; \\
& \operatorname{den}=\left[\begin{array}{llll}
a_{0} & a_{1} & \ldots & a_{n}
\end{array}\right] ;
\end{aligned}
$$

If the numerator contains leading zeros, they may be omitted, i.e., the number of elements in numcan be \leq the number of elements in den.
pol $y 2 t f d$ uses numand den as input to build a transfer function, g, in the MPC tf format (seetf section for details). Optional variables you can include are:

del \mathbf{t}

The sampling period. If this is zero or you omit it, pol y2t fd assumes that you are supplying a continuous-time transfer function. If you are supplying a discrete-time transfer function you must specify del t. Otherwise g will be misinterpreted when you use it later in the MPC Tool box functions.

del ay

The time delay. For a continuous-time transfer function, del ay should be in time units. For a discrete-time transfer function, del ay should be specified as

poly2tfd, poly format

the integer number of sampling periods of time delay. If you omit it, pol y2tfd assumes a delay of zero.

Examples Consider the continuous-time transfer function:

$$
G(s)=0.5 \frac{3 s-1}{5 s^{2}+2 s+1}
$$

It has no delay. The following command creates the MPC tf format:
$g=p o l y 2 t f d\left(0.5^{*}[3-1],\left[\begin{array}{lll}5 & 2 & 1\end{array}\right]\right)$;
Now suppose there were a delay of 2.5 time units:
$G(s)=0.5 \frac{3 s-1}{5 s^{2}+2 s+1} e^{-2.5 s}$. You could use:
g=pol y2tfd(0.5*[3-1],[5 2 1], 0, 2. 5);
Next let's get the equivalent transfer function in discrete form. An easy way is to get the correct poly form using cp2dp, then use pol y2tfd to get it in thetf form. Here are the commands to do it using a sampling period of 0.75 time units:
del $\mathrm{t}=0.75$;
[numd, dend] $=$ cp2dp(0. 5*[3 -1], [5 2 1], del t, rem 2. 5, del t)); $\mathrm{g}=\mathrm{pol} \mathrm{y} 2 \mathrm{tf} \mathrm{d}($ numd, dend, del t, fix(2.5/ del t));

Note that cp2dp is used to handle the fractional time delay and the integer number of sampling periods of time delay is an input to pol y2tfd. The results are:

0	0. 1232	-0. 1106	-0. 0607
dend $=$			
1. 0000	-1. 6445	0. 7408	0
$\mathrm{g}=$			
0	0. 1232	-0. 1106	-0. 0607
1. 0000	-1. 6445	0. 7408	0
0. 7500	3. 0000	0	0

See Also cp2dp,tf,th2mod, tfd2step

scmpc

Purpose

Syntax

yp $=\operatorname{scmpc}($ prod, i mod, yut, unt, $M P$, tend, r)
[yp, u, ym $=\operatorname{scmpc}($ prod, i mod, yut, unt, M P, tend, \ldots r, ul i m, yl i m, Kest, z, d, w, wu)

Description

scmpc simulates the performance of the type of system shown in the above diagram when there are bounds on the manipulated variables and/or outputs.

The required input variables are as follows:

pnod

Is a model in the MPC mod format that is to represent the plant.

i nod

Is a model in the MPC mod format that is to be used for state estimation in the controller. In general, it can be different from prod if you want to simulate the effect of plant/controller model mismatch.

yut

Is a matrix of weights that will be applied to the setpoint tracking errors (optional). If yut $=[\quad]$, the default is equal (unity) weighting of all outputs over the entire prediction horizon. If ywt ; [], it must have n_{y} columns, where n_{y} is the number of outputs. All weights must be ≥ 0.
You may vary the weights at each step in the prediction horizon by including up to P rows in ywt. Then the first row of n_{y} values applies to the tracking errors in the first step in the prediction horizon, the next row applies to the next step, etc. See smpccon for details on the form of the optimization objective function.

If you supply only nrow rows, where $1 \leq$ nrow $<\mathrm{P}$, scmpc will use the last row to fill in any remaining steps. Thus if you wish the weighting to be the same for all P steps, you need only specify a single row.

unt

Is as for yut, except that unt applies to the changes in the manipulated variables. If you use unt =[], the default is zero weighting. If unt ; [], it must have n_{u} columns, where n_{u} is the number of manipulated variables.

M

There are two ways to specify this variable:
If it is a scalar, scmpc interprets it as the input horizon (number of moves) as in DMC.

If it is a row vector containing n_{b} elements, each element of the vector indicates the number of steps over which $\Delta \mathrm{u}=0$ during the optimization and scmpc interprets it as a set of n_{b} blocking factors. There may be $1 \leq n_{b} \leq P$ blocking factors, and their sum must be $\leq P$.
If you set $M=[$, the default is $M=P$, which is equivalent to $M=o n e s(1, P)$.

P

The number of sampling periods in the prediction horizon.

tend

Is the desired duration of the simulation (in time units).

r

Is a setpoint matrix consisting of N rows and n_{y} columns, where n_{y} is the number of output variables, y :

$$
r=\left[\begin{array}{cccc}
r_{1}(1) & r_{2}(1) & \ldots & r_{n_{y}}(1) \\
r_{1}(2) & r_{2}(2) & \ldots & r_{n_{y}}(2) \\
\vdots & \vdots & \ldots & \vdots \\
r_{1}(N) & r_{2}(N) & \ldots & r_{n_{y}}(N)
\end{array}\right]
$$

where $r_{i}(k)$ is the setpoint for output j at time $t=k T$, and T is the sampling period (as specified by themi nf o vector in the mod format of prod and ind). If t end $>\mathrm{NT}$, the setpoints vary for the first N periods in the simulation, as specified by r, and are then held constant at the values given in the last row of r for the remainder of the simulation.

In many simulations one wants the setpoints to be constant for the entire time, in which caser need only contain a single row of n_{y} values.
If you set $r=[\quad]$, the default is a row of n_{y} zeros.
The following input variables are optional. In general, setting one of them equal to an empty matrix causes scmpc to use the default value, which is given in the description.

ulim

Is a matrix giving the limits on the manipulated variables. Its format is as follows:

$$
\begin{aligned}
& \text { ulim }=\left[\left[\begin{array}{ccc}
u_{\min , 1}(1) & \ldots & u_{\min , n_{u}}(1) \\
u_{\min , 1}(2) & \ldots & u_{\min , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\min , 1}(N) & \ldots & u_{\min , n_{u}}(N)
\end{array}\right]\right. \\
& {\left[\begin{array}{ccc}
u_{\max , 1}(1) & \ldots & u_{\max , n_{u}}(1) \\
u_{\max , 1}(2) & \ldots & u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\max , 1}(N) & \ldots & u_{\max , n_{u}}(N)
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
\Delta u_{\max , 1}(1) & \ldots & \Delta u_{\max , n_{u}}(1) \\
\Delta u_{\max , 1}(2) & \ldots & \Delta u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
\Delta u_{\max , 1}(N) & \ldots & \Delta u_{\max , n_{u}}(N)
\end{array}\right] }
\end{aligned}
$$

Note that it contains three matrices of N rows. In this case, the limits on N are $1 \leq N \leq n_{b}$, where n_{b} is the number of times the manipulated variables are to change over the input horizon. If you supply fewer than n_{b} rows, the last row is repeated automatically.

The first matrix specifies the lower bounds on the n_{u} manipulated variables. For example, $u_{\text {min, } j}(2)$ is the lower bound for manipulated variable j for the second move of the mani pulated variables (where the first move is at the start of the prediction horizon). If $u_{\text {min }, j}(k)=-i n f$, manipulated variablej will have no lower bound for that move.

The second matrix gives the upper bounds on the manipulated variables. If $u_{\text {max. }}(\mathrm{k})=\mathrm{inf}$, manipulated variablej will have no upper bound for that move.
The lower and upper bounds may beeither positive or negative (or zero) as long as $u_{\text {min }, j}(k) \leq u_{\max , j}(k)$.

Notes
The third matrix gives the limits on the rate of change of the manipulated variables. In other words, cmpc will forcel $u_{j}(k)-u_{j}(k-1) \mid \leq \Delta u_{\text {max }}(\mathrm{j}(\mathrm{k})$. The limits on the rate of change must be nonnegative and finite If you want it to be unbounded, set the bound to a large number (but not too large-a value of 10^{6} should work well in most cases).
The default is $\mathrm{u}_{\text {min }}=-\mathrm{inf}, \mathrm{u}_{\max }=\mathrm{inf}$ and $\Delta \mathrm{u}_{\text {max }}=10^{6}$

ylim

Same format as for ulim but for the lower and upper bounds of the outputs. The first row applies to the first point in the prediction horizon. The default is $y_{\text {min }}=-$ inf, and $y_{\text {max }}=i n f$.

Kest

Is the estimator gain matrix. The default is the DMC estimator. See smpcest for more details.

z

Is measurement noise that will be added to the outputs (see above diagram). The format is the same as for r . The default is a row of n_{y} zeros.

d

Is a matrix of measured disturbances (see above diagram). The format is the same as for r, except that the number of columns is n_{d} rather than n_{y} The default is a row of n_{d} zeros.s

w

Is a matrix of unmeasured disturbances (see above diagram). The format is the same as for r, except that the number of columns is n_{w} rather than n_{y} The default is a row of n_{w} zeros.

nu

Is a matrix of unmeasured disturbances that are added to the manipulated variables (see above diagram). The format is the same as for r, except that the number of columns is n_{u} rather than n_{y} The default is a row of n_{u} zeros.

- You may use a different number of rows in the matrices $r, z, d, w a n d$ m, should that be appropriate for your simulation.
- The ul i mconstraints used here are fundamentally different from the us at constraints used in the smpcsi mfunction. The ul i mconstraints are defined relative to the beginning of the prediction horizon, which moves as the simulation progresses. Thus at each sampling period, k, theul i mconstraints apply to a block of calculated moves that begin at sampling period k and extend for the duration of the input horizon. The usat constraints, on the other hand, are relative to the fixed point $t=0$, the start of the simulation.
The calculated outputs are as follows (all but yp are optional):

yp

Is a matrix containing M rows and n_{y} columns, where $M=\max ($ fix $($ tend $/ T)+1$, 2). The first row will contain the initial condition, and row $k-1$ will give the values of the noise-free plant outputs, \bar{y}_{p} (see above diagram), at timet $=k T$.
u
Is a matrix containing the same number of rows as yp and n_{u} columns. The time corresponding to each row is the same as for yp. The elements in each row are the values of the manipulated variables, u (see above diagram).

Note The u values are those coming from the controller before the addition of the unmeasured disturbance, w_{u}.

ym

Is a matrix of the same structure as yp, containing the values of the predicted output from the state estimator in the control ler. These will, in general, differ from those in yp if i mod; prod and/or there are unmeasured disturbances. The prediction includes the effect of the most recent measurement, i.e, it is $y(k \mid k)$.
For unconstrained problems, scmpc and smpcsi mshould give the same results. The latter will be faster because it uses an analytical solution of the QP problem, whereas scmpc solves it by iteration.

Examples

Consider the linear system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 e^{-3 \mathrm{~s}}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 \mathrm{e}^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 \mathrm{e}^{-3 \mathrm{~s}}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

The fol lowing statements build the model and set up the controller in the same way as in the smposi mexample.

```
g11=pol y2tfd(12. 8,[16.7 1],0,1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18.9,[21.0 1], 0, 3);
g22=pol y2tfd(-19. 4,[14.4 1], 0, 3);
del t=3; ny=2;
i mod=t f d2mod( del t, ny, g11, g21, g12, g22) ;
pmod=i mod; P=6; M=2; yut=[ ]; uut={1 1];
tend=30; r={0 1];
```

Here, however, we will demonstrate the effect of constraints. First we set a limit of 0.1 on the rate of change of u_{1} and a minimum of -0.15 for u_{2}.
ulimf-inf -0. 15 inf inf 0.1 100];
ylimf];
$[y, u]=s c m p c(p n o d, i \bmod$, yut, unt, M P, tend, r, ul i m yl im); pl otall(y, u, delt), pause

Note that $\Delta \mathrm{u}_{2}$ has a large (but finite) limit. It never comes into play.

Manipulated Variables

We next apply a lower bound of zero to both outputs:

```
ul imf[-inf -0.15 inf inf 0.1 100];
ylimf[0 O inf inf];
[ y,u] =scmpc(pnod, i nod, yut, unt, M P, t end, r, ul i m yl i m);
pl ot al l (y,u, delt),
pause
```

The following results show that no constraints are violated.

Restrictions

Suggestions

See Also

- Initial conditions of zero are used for all states in i mod and pmod. This simulates the condition where all variables represent a deviation from a steady-state initial condition.
- The first $\mathrm{n}_{\mathrm{u}}+\mathrm{n}_{\mathrm{d}}$ columns of the D matrices in i mod and prod must be zero. In other words, neither u nor d may have an immediate effect on the outputs.

Problems with many inequality constraints can be very time consuming. You can minimize the number of constraints by:

- Using small values for P and/or M
- Leaving variables unconstrained (limits at \pm inf) intermittently unless you think the constraint is important.

[^4]
Purpose

Syntax

Description

Restrictions

See Also addma, addmod, addumd, appmod, par anod

Purpose

Syntax
[cl mod, cmod] $=\operatorname{smpccl}($ prod, i mod, Ks$)$
[cl mod, cmod] $=\operatorname{smpccl}($ prod, i mod, Ks, Kest $)$

Description

Combines a plant model and a controller model in the MPC mod format, yiel ding a closed-loop system model in the MPC format. This can be used for stability analysis and linear simulations of closed-loop performance.

pnod

Is a model (in the mod format) representing the pl ant in the above diagram.

i nod

Is a model (in the same format) that is to be used to design the MPC controller block shown in the diagram. It may bethe same as pmod (in which case there is no moded error in the controller design), or it may be different.

Ks

Is a controller gain matrix, which must have been calculated by the function smpccon.

Kest

Is an (optional) estimator gain matrix. If omitted or set to an empty matrix, the default is to use the DMC estimator index DMC estimator. See the documentation for the function smpcest for more details on the design and proper format of Kest.

smpcel

Calculates a model of the closed-loop system, cl mod. It is in the mod format and can be used, for example, with analysis functions such as smpcgai n and smpcpol e, and with simulation routines such as mod2step and dl si mm smpccl also calculates a model of the controller element, cmod.

The closed-loop model, cl mod, has the following state-space representation:

$$
\begin{gathered}
\mathrm{x}_{\mathrm{cl}}(\mathrm{k}+1)=\Phi_{\mathrm{cl}} \mathrm{x}_{\mathrm{cl}}(\mathrm{k})+\Gamma_{\mathrm{cl}} \mathrm{u}_{\mathrm{cl}}(\mathrm{k}) \\
\mathrm{y}_{\mathrm{cl}}(\mathrm{k})=\mathrm{C}_{\mathrm{cl}} \mathrm{x}_{\mathrm{cl}}(\mathrm{k})+\mathrm{D}_{\mathrm{cl}} \mathrm{u}_{\mathrm{cl}}(\mathrm{k})
\end{gathered}
$$

where $x_{c l}$ is a vector of n state variables, $u_{c l}$ is a vector of input variables, $y_{c l}$ is a vector of outputs, and $\Phi_{c l}, \Gamma_{c l}, C_{c l}$, and $D_{c l}$ are matrices of appropriate size. The expert user may want to know the significance of the state variables in $x_{c l}$. They are (in the following order):

- The n_{p} states of the plant (as specified in prod),
- The n_{i} changes in the state estimates (based on the model specified in i mod and the estimator gain, Kest),
- The n_{y} estimates of the noi se-free plant output $y=(k \mid k-1)$ (from the state estimator),
- n_{u} integrators that operate on the $\Delta \mathrm{u}$ signal produced by the standard MPC formulation to yield a u signal that can be used as input to the plant and as a closed-loop output, and
- n_{d} differencing elements that operateon thed signal to producethe $\Delta \mathrm{d}$ signal required in the standard MPC formulation. If there are no measured disturbances, these states are omitted.

The closed-loop input and output variables are:

$$
\mathrm{u}_{\mathrm{cl}}(\mathrm{k})=\left[\begin{array}{c}
\mathrm{r}(\mathrm{k}) \\
\mathrm{z}(\mathrm{k}) \\
\mathrm{w}_{\mathrm{u}}(\mathrm{k}) \\
\mathrm{d}(\mathrm{k}) \\
\mathrm{w}(\mathrm{k})
\end{array}\right] \quad \text { and } \quad \mathrm{y}_{\mathrm{cl}}(\mathrm{k})=\left[\begin{array}{c}
\mathrm{y}_{\mathrm{p}}(\mathrm{k}) \\
\mathrm{u}(\mathrm{k}) \\
\mathrm{y}(\mathrm{k} \mid \mathrm{k})
\end{array}\right]
$$

where $y=(k \mid k)$ is the estimate of the noise-free plant output at sampling period k based on information available at period k. This estimate is generated by the controller element.

Note that $u_{c l}$ will include d and/or w automatically whenever pmod includes measured disturbances and/or unmeasured disturbances. Thus the length of the $u_{c l}$ vector will depend on the inputs you have defined in pmod and i mod. Similarly, ycl depends on the number of outputs and manipulated variables. Let m and p be the lengths of $u_{c l}$ and $y_{c l}$, respectively. Then

$$
\begin{aligned}
& m=2 n_{y}+n_{u}+n_{d}+n_{w} \\
& p=2 n_{y}+n_{u}
\end{aligned}
$$

The state-space form of the controller model, cmod, can be written as:

$$
\begin{aligned}
x_{C}(k+1) & =\Phi_{C} x_{C}(k)+\Gamma_{C l} u_{c}(k) \\
y_{C}(k) & =C_{C} x_{C}(k)+D_{c} u_{c}(k)
\end{aligned}
$$

where

$$
u_{c}(k)=\left[\begin{array}{l}
\mathrm{r}(\mathrm{k}) \\
\mathrm{y}(\mathrm{k}) \\
\mathrm{d}(\mathrm{k})
\end{array}\right] \quad \text { and } \quad \mathrm{y}_{\mathrm{c}}(\mathrm{k})=\mathrm{u}(\mathrm{k})
$$

and the controller states are the same as those of the closed loop system except that the n_{p} plant states are not included.

Examples

Consider the linear system:

$$
\left[\begin{array}{l}
y_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 e^{-3 s}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 e^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 e^{-3 s}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

We build this model using the MPC Tool box functions pol y2t fd and $\mathrm{tf} \mathrm{d} 2 \bmod$.

```
g11=pol y2tfd(12. 8,[16.7 1], 0, 1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18.9,[21.0 1], 0, 3);
g22=pol y2tfd(-19.4,[14.4 1], 0, 3);
del t=3; ny=2;
i mod=t f d2mod( del t, ny, g11, g21, g12, g22) ;
prod=i mod; % No pl ant/model mi smat ch
```

Now we design the controller. Since there is delay, we use M < P: We specify the defaults for the other tuning parameters, unt and yut, then calculate the controller gain:
$\mathrm{P}=6$; \% Predi ction horizon.
$\mathrm{M}=2$; \% Nunber of moves (i nput horizon).
yut $=[$]; \% Out put wei ghts (default - unity on
\% all outputs).
unt =[]; \% Man. Var wei ghts (default - zero on
\% all man. vars).
$\mathrm{Ks}=$ smpccon(i mod, yut, unt, M P) ;
Now we can calculate the model of the closed-loop system and check its poles for stability:
cl mod=smpccl (prod, i mod, Ks) ;
maxpol e=tax(abs(smpcpol e(cl mod)))
The result is:
maxpole $=0.8869$
Since this is less than 1, the plant and controller combination will be closed-loop stable. (The closed-loop system has 20 states in this example).

You can also use the closed-loop model to calculate and plot the step response with respect to all the inputs. The appropriate commands are:

```
t end=30;
cl step=mod2st ep( cl mod, t end);
pl ot step(cl step)
```

Since the closed-loop system has $m=6$ inputs and $p=6$ outputs, only one of the plots is reproduced here. It shows the response of the first 4 closed-loop outputs to a step in the first closed-loop input, which is the setpoint for y_{1} :

Closed-loop outputs y_{1} and y_{2} are the true plant outputs (noisefree). Output y_{1} goes to the new setpoint quickly with a small overshoot. This causes a small, short-term disturbance in y_{2}. The plots for y_{3} and y_{4} show the required variation in the manipulated variables.

The following commands show how you could use dl si mmto calculate the response of the closed-loop system to a step in the setpoint for y_{1}, with added random measurement noise.

```
r=[ ones(11, 1) zeros(11, 1)];
z=0.1*rand(11, 2);
mu=zeros(11, 2);
d=[ ];
w=[ ];
ucl =[ r z wu d w];
[ phi cl, gamel, ccl, dcl ] =rod2ss( cl mods);
ycl=dl si mm( phi cl, gamel, ccl, dcl, ucl );
y=ycl (:, 1:2); u=ycl (:, 3: 4); ym}=\textrm{ycl}(:,5:6)
```

Restrictions

See Also

- i mod and pmod must have been created using the same sampling period, and an equal number of outputs, measured disturbances, and manipulated variables.
- Both i mod and prod must be strictly proper, i.e., the D matrices in their state-space descriptions must be zero. Exception: the last n_{w} columns of the D matrices may be nonzero, i.e., the unmeasured disturbance may have an immediate effect on the outputs.

Purpose Calculates MPC controller gain using a model in MPC mod format.

Syntax \quad| Ks | $=\operatorname{smpccon}(i \bmod)$ |
| ---: | :--- |
| $K s$ | $=s m p c c o n(i \bmod$, yut, unt, M P) |

Description
Combines the following variables (most of which are optional and have default values) to calculate the state-space MPC gain matrix, Ks.
i mod is the model of the process to be used in the controller design (in the mod format).

The following input variables are optional:

yut

Is a matrix of weights that will be applied to the setpoint tracking errors. If you useyut =[] or omit it, the default is equal (unity) weighting of all outputs over the entire prediction horizon. If yut ; [] , it must have n_{y} columns, where n_{y} is the number of outputs. All weights must be ≥ 0.

You may vary the weights at each step in the prediction horizon by including up to P rows in yut. Then thefirst row of n_{y} values applies to the tracking errors in the first step in the prediction horizon, the next row applies to the next step, etc.

If you supply only nrow rows, where $1 \leq$ nrow $<$ P, smpccon will use the last row to fill in any remaining steps. Thus if you wish the weighting to be the same for all P steps, you need only specify a single row.

unt

Same format as yut, except that unt applies to the changes in the manipulated variables. If you use unt $=[$] or omit it, the default is zero weighting. If unt ; [], it must have n_{u} columns, where n_{u} is the number of manipulated variables.

M

There are two ways to specify this variable:
If it is a scal ar, smpccon interprets it as the input horizon (number of moves) as in DMC.

If it is a row vector containing n_{b} elements, each element of the vector indicates the number of steps over which $\Delta u=0$ during the optimization and smpccon interprets it as a set of n_{b} blocking factors. There may be $1 \leq n_{b} \leq P$ blocking factors, and their sum must be $\leq P$.

If you set M=[] or omit it, the default is M $=P$, which is equivalent to M=ones (1, P).

P

The number of sampling periods in the prediction horizon. If you set $\mathrm{P}=[$] or omit it, the default is $\mathrm{P}=1$.

If you take the default values for all the optional variables, you get the "perfect controller," i.e., a model-inverse controller. This controller is not applicable in the following situations:

- When one or more outputs cannot respond to the manipulated variables within 1 sampling period due to time delay, the plant-inverse controller is unrealizable. To counteract this you can penalize changes in the manipulated variables (variable unt), use blocking (variableM), and/or make $P \gg M$
- When i mod contains transmission zeros outside the unit circle the plant-inverse controller will be unstable. To counteract this, you can use blocking (variable M), restrict the input horizon (variable M), and/or penalize changes in the manipulated variables (variable unt).
The model-inverse controller is also relatively sensitive to model error and is best used as a point of reference from which you can progress to a more robust design.

Algorithm

The controller gain is a component of the solution to the optimization problem:

$$
\begin{aligned}
\operatorname{Minimize} J(k) & =\sum_{j=1}^{p} \sum_{i=1}^{n_{y}}\left(y w w t_{i}(j)\left[r_{i}(k+j)-y_{i}(k+j)\right]\right)^{2} \\
& +\sum_{j=1}^{n_{b}} \sum_{i=1}^{n_{u}}\left(\text { uwt }_{i}(j) \Delta a_{i}(j)\right)^{2}
\end{aligned}
$$

with respect to $\Delta \mathfrak{u}_{\mathrm{i}}(\mathrm{j})$ (a series of current and future moves in the manipulated variables), where $y_{i}(k+j)$ is a prediction of output i at a time j sampling periods into the future (relative to the current time, k), which is a function of
$\Delta \mathfrak{a}_{\mathrm{i}}(\mathrm{j}), \mathrm{r}_{\mathrm{i}}(\mathrm{k}+\mathrm{j})$ is the corresponding future setpoint, and n_{b} is the number of blocks or moves of the manipulated variables.

References Ricker, N. L. "Use of Quadratic Programming for Constrained Internal Model Control," Ind. Eng. Chem. Process Des. Dev., 1985, 24, 925-936.
Ricker, N. L. "M odel-predictive control with state estimation," I \& EC Res., 1990, 29, 374.

Example Consider the linear system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 \mathrm{e}^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 \mathrm{e}^{-3 \mathrm{~s}}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 \mathrm{e}^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 \mathrm{e}^{-3 \mathrm{~s}}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

See the smpccl example for the commands that build the model and a simple controller for this process.

Here is a slightly more complex design with blocking and time-varying weights on the manipulated and output variables:

```
P=6; M=[ 2 4];
    uut=[1 0; 0 1];
    yut =[1 0.1; 0.8 0.1; 0.1 0.1];
    Ks=smpccon(i mod, yut, unt, M P) ;
    tend=30; r=[ 1 0];
    [ y, u] =smpcsi n( pmod, i nod, Ks, t end, r );
```

There is no particular rationale for using time varying weights in this case it is only for illustration. The manipulated variables will make 2 moves during the prediction horizon (see value of M above). The unt selection gives u_{1} a unity weight and u_{2} a zero weight for the first move, then switches the weights for the second move. If there had been any additional moves they would have had the same weighting as the second move.

The yut value assigns a constant weight of 0.1 to y_{2}, and a weight that decreases over the first 3 periods to y_{1}. The weights for periods 4 to 6 are the same as for period 3. The resulting closed-loop (servo) response is:

See Also scmpc, smpccl, smpcsim

Purpose Sets up a state-estimator gain matrix for use with MPC controller design and simulation routines using models in MPC mod format. Can use either a disturbance/noise model that you specify, or a simplified form in which each output is affected by an independent disturbance (plus measurement noise).

Syntax

For the general case:

```
[ Kest] = smpcest(i mod, Q, R)
```

For simplified disturbance modeling:
[Kest, neurrod] = smpcest(imod)
[Kest, newnod] = smpcest(imod, tau, si gnoi se)

Description

General Case

i nod

Is the model (in mod format) to be used as the basis for the state estimator. It should be the same as that used to calculate the controller gain (see smpccon). It must include a model of the disturbances, i.e., the G_{w} element in the above
diagram. Y ou could, for example, use addumd to combine a plant and disturbance model, yiel ding a composite model in the proper form.

Q

Is a symmetric, positive semi-definite matrix giving the covariances of the disturbances in w. It must be n_{w} by n_{w} where $n_{w}(\geq 1)$ is the number of unmeasured disturbances in imod (i.e., the length of w).

R

Is a symmetric, positive-definite matrix giving the covariances of the measurement noise, z. It must be $n_{y m}$ by $n_{y m}$, where $n_{y m}(\geq 1)$ is the number of measured outputs in i nod.

The calculated output variable is:

Kest

The estimator gain matrix. It will contain $\mathrm{n}+\mathrm{n}_{\mathrm{y}}$ rows and n_{ym} columns, where n is the number of states in imod, and n_{y} is the total number of outputs (measured plus unmeasured).

Simplified disturbance modeling

For the simplified disturbance/ noise model we make the following assumptions:

- The vectors w, z, y and y are all length n_{y}.
- G_{w} is diagonal. Thus each element of w affects one (and only one) element of y. Diagonal element $\mathrm{G}_{\text {wi }}$ has the discrete (sampled-data) form:

$$
G_{w i}(q)=\frac{1}{q-a_{i}}
$$

where $\mathrm{a}_{\mathrm{i}}=\mathrm{e}^{-\mathrm{T} /} \tau^{\mathrm{i}}, 0 \leq \tau_{\mathrm{i}} \leq \infty$, and T is the sampling period.
As $\tau_{\mathrm{i}} \rightarrow 0$, Gwi (q) approaches a unity gain, while as $\tau_{\mathrm{i}} \rightarrow \infty, \mathrm{G}_{\mathrm{wi}}$ becomes an integrator.

- Element i of $\Delta \mathrm{w}$ is a stationary white-noise signal with zero mean and standard deviation $\sigma_{w i}\left(\right.$ where $\left.w_{i}(k)=w_{i}(k)-w_{i}(k-1)\right)$.
- Element i of z is a stationary white-noisesignal with zeromean and standard deviation $\sigma_{z i}$.

The input variables are then as follows:

i nod

Is the model (in mod format) to be used as the basis for the state estimator. It should be the same as that used to cal culate the controller gain (see smpccon).

tau

Is a row vector, length n_{y} giving the values of τ_{i} to be used in eq. 1. Each element must satisfy: $0 \leq \tau_{\mathrm{i}} \leq \infty$. If you use tau $=[$, smpcest uses the default, which is n_{y} zeros.

si gnoi se

Is a row vector, length n_{y} giving the signal-to-noise ratio for the each disturbance, defined as $\gamma_{\mathrm{i}}=\sigma_{\mathrm{wi}}=\sigma_{\mathrm{z}}$. Each element must be nonnegative. If omitted, snpcsi muses an infinite signal-to-noise ratio for each output.
The cal culated output variables are:

Kest

The estimator gain matrix.

newnod

The modified version of i mod, which must be used in place of i mod in any simulation/anal ysis functions that require Kest (e.g., snpccl , smpcsi m scmpc).

If i mod contains n states, and there are n_{1} outputs for which $\tau_{\mathrm{i}}>0$, then newmod will have $\mathrm{n}+\mathrm{n}_{1}$ states. The optimal gain matrix, Kest, will have $\mathrm{n}+$ $n_{1}+n_{y}$ rows and $n_{y m}$ columns. The first n rows will be zero, the next n_{1} rows will have the gains for the estimates of the n_{1} added states (if any), and the last n_{y} rows will have the gains for estimating the noisefree outputs, y.

Examples Consider the linear system:

$$
\left[\begin{array}{l}
y_{1}(s) \\
y_{2}(s)
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 s+1} & \frac{-18.9 e^{-3 s}}{21.0 s+1} \\
\frac{6.6 e^{-7 s}}{10.9 s+1} & \frac{-19.4 e^{-3 s}}{14.4 s+1}
\end{array}\right]\left[\begin{array}{l}
u_{1}(s) \\
u_{2}(s)
\end{array}\right]+\left[\begin{array}{c}
\frac{3.8 e^{-8 s}}{14.9 s+1} \\
\frac{4.9 e^{-3 s}}{13.2 s+1}
\end{array}\right] w(s)
$$

The fol lowing statements build two models: prod, which contains the model of the disturbance, w, and imod, which does not.

```
g11=pol y2tfd(12. 8,[16.7 1], 0, 1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18. 9,[21.0 1],0,3);
g22=pol y2tfd(-19.4,[14.4 1], 0, 3);
del t=1; ny=2;
i mod=t f d2mod( del t, ny, g11, g21, g12, g22) ;
gw1=pol y2tfd(3. 8,[14.9 1], 0, 8);
gw2=pol y2tfd(4.9,[13.2 1],0,3);
pmod=addund(i mod, t f d2mod( del t, ny, gwl, gw2) );
```

Calculate the gain for a typical MPC (unconstrained) controller

```
P=6; M=2;
yut=[ ]; unt =[ 1 1];
Ks=smpccon(i mod, yut, unt, M P) ;
```

Next design an estimator using the G_{w} model in prod. The choices of Q and R are arbitrary. R was made rel atively small (since measurement noise will be negligible in the simulations).

```
Kest 1=smpcest ( prod, 1, 0.001*eye( ny) );
Ks 1=smpccon(prod, yut, unt,M, P);
```

Now design another estimator using a simplified disturbance model in which each output is affected by a disturbance with a first-order time constant of 10 and a signal-to-noise ratio of 3.
tau=[10 10]; si gnoi se=[3 3];
[Kest 2, newmod] =smpcest (i mod, t au, si gnoi se) ;
Ks 2=smpccon(newnod, yut, unt, M P) ;
Compare the performance of these two estimators to the default (DMC) estimator when there is a unit step in w:
$r=[$]; ulim\#]; $z=[] ; d=[$]; $w=[1]$; wu=[]; tend=30;
[$\mathrm{y}_{1}, \mathrm{u}_{1}$] $=$ smpcsi m(prod, prod, Ks1, tend, r, ul i m Kest 1, $\left.z, ~ d, ~ w, ~ w u\right) ~ ; ~$
$\left[y_{2}, u_{2}\right]=s m p c s i$ m(prod, newmod, Ks2, t end, r, ul i m, Kest 2, z, d, w, wu) ;
$\left[y_{3}, u 3\right]=s m p c s i \ln$ prod, i mod, Ks, tend, r, ul i m [] , z, d, w, wu) ;

The solid lines in the following plots are for $y_{1}\left(\right.$ or $\left.u_{1}\right)$ and the dashed lines are for y_{2} (or u_{2}). Both outputs have setpoints at zero. You can see that the default estimator is much more sluggish than the others in counteracting this type of disturbance. The simplified disturbance design does nearly as well as that using the exact model of the disturbances. The main difference is that it allows more error in y_{1} following the disturbance in y_{2}.

The first 14 states in both i mod and pmod are for the response of the outputs to u. Since the unmeasured disturbance has no effect on them, their gains are
zero. pmod contains 10 additional disturbance states and there are 2 outputs, so the last 12 rows of Kest 1 are nonzero:

$$
\begin{array}{lr}
\text { Kest } 1(15: 26,:)= \\
-0.0556 & 8.8659 \\
-0.0594 & 7.1499 \\
-0.0635 & 5.1314 \\
-0.0679 & 2.7748 \\
-0.0725 & 0.0411 \\
-0.0781 & -0.0182 \\
-0.0915 & -0.0008 \\
-0.0520 & 0.0001 \\
1.2663 & 0.0000 \\
0.0281 & -0.0000 \\
0.3137 & 0.0000 \\
0.0000 & 0.9925
\end{array}
$$

and the last 4 rows of Kest 2 are nonzero:

Kest 2(15: 18, : $)$	$=$
0.7274	0
0	0.7274
0.9261	0
0	0.9261

Algorithm In the general case, smpcest uses dl qe2 to calculate the optimal estimator gain, Kest. In the simplified case, it uses an analytical solution of the discrete Riccati equation (which is possible to obtain in this case because the disturbances are independent with low-order dynamics).

The number of rows in Kest is larger than that in newmod because the MPC analysis and simulation functions augment the model states with the outputs (see mpcaugss), and Kest must be set up to account for this.

If all $\tau_{\mathrm{i}}=0$ and all $\gamma_{\mathrm{i}}=\infty$, we get the DMC estimator, which has n rows of zeros followed by an identity matrix of dimension n_{y}. This is the default for all of the MPC analysis and simulation routines that require an estimator gain as input.

Important note: smpcest decides whether you are using the general case or the simplified approach by checking the number of output arguments you have supplied. If there is only one, it assumes you want the general case. Otherwise, it proceeds as for the simplified case. It checks the dimensions of your input arguments to make sure they are consistent with this decision.

If you get unexpected results or an error message, makesureyou havespecified the correct number of output arguments.

See Also scmpc, smpccl, smpccon, smpcsim

smpcgain, smpcpole

Purpose	Calculates steady-state gain matrix or poles for a system in the MPC mod format.
Syntax	$\begin{aligned} & \mathrm{g}=\mathrm{smpcgai} \mathrm{n}(\text { mod }) \\ & \text { pol es }=\mathrm{smpcpol} \text { e(mod }) \end{aligned}$
Description	mod is a dynamic model in the MPC mod format. smpcgai n and smpcpol e convert it to its equivalent state-space form: $\begin{gathered} x(k+1)=\Phi x(k)+\Gamma v(k) \\ y(k)=C x(k)+\operatorname{Dv}(k) \end{gathered}$ where v includes all of the inputs in nod. smpcgai n then calculates the gain matrix: $\mathrm{G}=\mathrm{C}(\mathrm{I}-\Phi)^{1} \Gamma+\mathrm{D}$ which contains n_{y} rows, corresponding to each of the outputs in mod, and $n_{u}+$ $n_{d}+n_{w}$ columns, corresponding to each of the inputs. smpcpol e calculates the poles, i.e., the eigenvalues of the Φ matrix.
Example	See smpcal for an example of the use of smpcpol e.
Restriction	If mod is not asymptotically stable, smpcgai n terminates with an error message.
See Also	nod

smpcsim

Purpose

Syntax

yp = smocsi m(pnod, i mod, Ks, tend, r)
[yp, u, ym] = smpcsi mprod, i mod, Ks, tend, r, us at , ... Kest, z, d, w, wu)
Simulates closed-loop systems with saturation constraints on the manipulated variables using models in the MPC mod format. Can also be used for open-loop simulations.
Kest , z, d, w, wi)

Description

smpcsi mprovides a convenient way to simulate the performance of the type of system shown in the above diagram. The required input variables are as follows:

pnod

Is a model in the MPC mod format that is to represent the plant.

i nod

Is a model in the MPC mod format that is to be used for state estimation in the controller. In general, it can be different from prod if you wish to simulate the effect of plant/controller model mismatch. Note, however, that i mod should be the same as that used to calculate Ks.

Ks

Is the MPC controller gain matrix, usually calculated using the function smpccon.

If you set Ks to an empty matrix, smpcsi mwill do an open-loop simulation. Then the inputs to the plant will ber (which must beset to the vector of manipulated variables in this case), d, w, and m. The measurement noise input, z, will be ignored.

tend

Is the desired duration of the simulation (in time units).

r

Is normally a setpoint matrix consisting of N rows and n_{y} columns, where n_{y} is the number of output variables, y :

$$
r=\left[\begin{array}{cccc}
r_{1}(1) & r_{2}(1) & \ldots & r_{n_{y}}(1) \\
r_{1}(2) & r_{2}(2) & \ldots & r_{n_{y}}(2) \\
\vdots & \vdots & \ldots & \vdots \\
r_{1}(N) & r_{2}(N) & \ldots & r_{n_{y}}(N)
\end{array}\right]
$$

where $r_{i}(k)$ is the setpoint for output j at time $t=k T$, and T is the sampling period (as specified by the mi nf o vector in the mod format of prod and inod). If tend $>N T$, the setpoints vary for the first N periods in the simulation, as specified by r, and are then held constant at the values given in the last row of r for the remainder of the simulation.

In many simulations one wants the setpoints to be constant for the entiretime, in which caser need only contain a single row of n_{y} values.
If you set $r=[\quad]$, the default is a row of n_{y} zeros.
For open-loop simulations, r specifies the manipulated variables and must contain n_{u} columns.
The following input variables are optional. In general, setting one of them equal to an empty matrix causes smpcsi mto use the default value, which is given in the description.

usat

Is a matrix giving the saturation limits on the manipulated variables. Its format is as follows:

$$
\begin{aligned}
\text { usat }= & {\left[\begin{array}{ccc}
u_{\min , 1}(1) & \ldots & u_{\min , n_{u}}(1) \\
u_{\min , 1}(2) & \ldots & u_{\min , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\min , 1}(N) & \ldots & u_{\min , n_{u}}(N)
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
u_{\max , 1}(1) & \ldots & u_{\max , n_{u}}(1) \\
u_{\max , 1}(2) & \ldots & u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
u_{\max , 1} 1(N) & \ldots & u_{\max , n_{u}}(N)
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
\Delta u_{\max , 1}(1) & \ldots & \Delta u_{\max , n_{u}}(1) \\
\Delta u_{\max , 1}(2) & \ldots & \Delta u_{\max , n_{u}}(2) \\
\vdots & \ldots & \vdots \\
\Delta u_{\max , 1}(N) & \ldots & \Delta u_{\max , n_{u}}(N)
\end{array}\right] }
\end{aligned}
$$

Note that it contains three matrices of N rows. N may be different than that for the setpoint matrix, r, but the idea is the same: the saturation limits will vary for the first N sampling periods of the simulation, then be held constant at the values given in the last row of usat for the remaining periods (if any).

The first matrix specifies the lower bounds on the n_{u} manipulated variables. For example, $u_{\min , j}(k)$ is the lower bound for manipulated variablej at time $t=$ kT in the simulation. If $\mathrm{u}_{\text {min }, \mathrm{j}}(\mathrm{k})=-\mathrm{inf}$, manipulated variablej will have no lower bound at $\mathrm{t}=\mathrm{kT}$.

The second matrix gives the upper bounds on the manipulated variables. If $u_{m a x, j}(k)=i n f$, manipulated variablej will have no upper bound at $t=k T$.
The lower and upper bounds may be either positive or negative (or zero) as long as $\mathrm{u}_{\text {min }}{ }^{\mathrm{j}}(\mathrm{k}) \leq \mathrm{u}_{\text {max }, \mathrm{j}}(\mathrm{k})$.

The third matrix gives the limits on the rate of change of the manipulated variables. In other words, smpcsi mwill force| $u_{j}(k)-u_{j}(k-1) \mid \leq \Delta u_{\text {max }, j}(k)$. The limits on the rate of change must be nonnegative.

The default is no saturation constraints, i.e., all the umin values will be set to -inf, and all the $u_{\max }$ and $\Delta u_{\text {max }}$ values will be set to inf.

Note: Saturation constraints are enforced by simply "clipping" the manipulated variable moves so that they satisfy all constraints. This is a nonoptimal solution that, in general, will differ from the results you would get using the ul i mvariable in scmp.

Kest

Is the estimator gain matrix. The default is the DMC estimator. See smpcest for more details.

z

Is measurement noise that will be added to the outputs (see above diagram). The format is the same as for r. The default is a row of n_{y} zeros.

d

Is a matrix of measured disturbances (see above diagram). The format is the same as for r, except that the number of columns is n_{d} rather than n_{y} The default is a row of n_{d} zeros.

w

Is a matrix of unmeasured disturbances (see above diagram). The format is the same as for r, except that the number of columns is n_{w} rather than n_{y} The default is a row of n_{w} zeros.l

nu

Is a matrix of unmeasured disturbances that are added to the manipulated variables (see above diagram). The format is the same as for r, except that the number of columns is n_{u} rather than n_{y} The default is a row of n_{u} zeros.

Note: You may use a different number of rows in the matrices r, usat, z, d, w and mu, should that be appropriate for your simulation.

The calculated outputs are as follows (all but yp are optional):

yp

Is a matrix containing M rows and n_{y} columns, where $M=\max (f i x($ tend $=T)+1,2)$. The first row will contain the initial condition, and row k - 1 will give the values of the plant outputs, y (see above diagram), at time $\mathrm{t}=\mathrm{kT}$.
u
Is a matrix containing the same number of rows as yp and n_{u} columns. Thetime corresponding to each row is the same as for yp. The elements in each row are the values of the manipulated variables, u (see above diagram).

Note: The u values are those coming from the controller before the addition of the unmeasured disturbance, w_{u}.

ym

Is a matrix of the same structure as yp, containing the values of the predicted output from the state estimator in the controller. These will, in general, differ from those in yp if i mod; prod and/or there are unmeasured disturbances. The prediction includes the effect of the most recent measurement, i.e, it isy (k|k).

Examples

Consider the linear system:

$$
\left[\begin{array}{l}
y_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 e^{-3 s}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 e^{-7 s}}{10.9 \mathrm{~s}+1} & \frac{-19.4 e^{-3 s}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

The following statements build the model and cal culate the MPC controller gain:
g11=pol y2tfd(12. 8, [16. 7 1] , 0, 1) ;
g21=pol y2tfd(6.6,[10.91],0,7);
g12=pol y2tfd(-18. 9, [21. 0 1], 0, 3);
g22=pol y2tfd(-19.4, [14.4 1], 0, 3);
del $t=3$; ny=2;
i mod=t fd2mod(del t, ny, g11, g21, g12, g22) ;
prod=i mod;
$P=6 ; \quad M=2$;
yut $=\left[\right.$]; unt $=\left[\begin{array}{ll}11 & 1]\end{array}\right.$
$\mathrm{Ks}=$ smpccon(i mod, yut, unt, M, P) ;
Simulate and plot theclosed-loop performancefor a unit step in the setpoint for y_{2}, occurring at $t=0$.

```
tend=30; r={ 0 1];
```

[y, u] $=$ smpcsi m(prod, i mod, Ks, tend, r);
pl ot all ($y, u, d e l t$), pause

Try a pulse change in the disturbance that adds to u_{1} :
$\mathrm{r}=[\mathrm{]}$; usat =[]; Kest =[]; $\mathrm{z=}$]] d=[]; w=[];
mu=[1 0; 0 0];
[$y, u]=s m p c s i$ mipnod, i mod, Ks, t end, r, usat, Kest, $z, d, w, w u)$; pl ot al l(y, u, del t), pause

For the same disturbance as in the previous case, limit the rates of change of both manipulated variables.

```
usat =[-inf -inf inf inf 0.1 0.05];
[ y, u] =smposi m( pmod, i mod, Ks, t end, r, usat, Kest, z, d, w, mu) ;
pl ot all(y,u, del t), pause
```


Manipulated Variables

Restrictions

See Also

- Initial conditions of zero are used for all states in i mod and prod. This simulates the condition where all variables represent a deviation from a steady-state initial condition.
- The first $\mathrm{n}_{\mathrm{u}}+\mathrm{n}_{\mathrm{d}}$ columns of the D matrices in pmod and i mod must be zero. In other words, neither u nor d may have an immediate effect on the outputs.
pl ot all, pl ot each, scmpc, smpccl, smpccon, smpcest

Purpose
Syntax $\quad \begin{aligned} \operatorname{prod} & =\operatorname{ss} 2 \bmod (\text { phi }, \operatorname{gam} c, d) \\ \operatorname{pnod} & =\operatorname{ss} 2 \bmod (\operatorname{phi}, \operatorname{gam} c, d, m \operatorname{mfo})\end{aligned}$

Description

Consider the process shown in the above block diagram. ss2mod assumes the following state-space representation:

$$
\begin{aligned}
x(k+1) & =\Phi x(k)+\Gamma_{u} u(k)+\Gamma_{d} d(k)+\Gamma_{w} w(k) \\
y(k) & =y(k)+z(k) \\
& =C x(k)+D_{u} u(k)+D_{d} d(k)+D_{w} w(k)+z(k)
\end{aligned}
$$

where x is a vector of n state variables, u represents n_{u} manipulated variables, d represents n_{d} measured disturbances, w represents n_{w} unmeasured disturbances, y is a vector of n_{y} plant outputs, z is measurement noise, and Φ, Γ_{u}, etc., are constant matrices of appropriate size. The variable y (k) represents the plant output before the addition of measurement noise. We further define:

$$
\begin{aligned}
& \mathrm{D}=\left[\mathrm{D}_{\mathrm{u}} \mathrm{D}_{\mathrm{d}} \mathrm{D}_{\mathrm{w}}\right] \\
& \Gamma=\left[\Gamma_{\mathrm{u}} \Gamma_{\mathrm{d}} \Gamma_{\mathrm{w}}\right]
\end{aligned}
$$

ss2nod uses the Φ, Γ, C, and D matrices you supply to build a model, prod, in the MPC mod format. See the nod section for more details.

You can also divide the outputs into n_{ym} measured outputs and n_{yu} unmeasured outputs, where $\mathrm{n}_{\mathrm{ym}}+\mathrm{n}_{\mathrm{yu}}=\mathrm{n}_{\mathrm{y}}$. Then the first n_{ym} elements in y and the first n_{ym} rows in C and D are assumed to be for the measured outputs, and the rest are for the unmeasured outputs.
min nf o is an optional variable that allows you to specify certain characteristics of the system. The general form is a row vector with 7 elements, the interpretation of which is as follows:
mi nf o (1) T, the sampling period used to create the model.
(2) n , the number of states.
(3) n_{u}, the number of manipulated variable inputs.
(4) n_{d}, the number of measured disturbances.
(5) n_{w}, the number of unmeasured disturbances.
(6) n_{ym}, the number of measured outputs.
(7) n_{yu}, the number of unmeasured outputs.

If you specify min o as a scal ar, ss2mod takes it as the sampling period and sets the remaining elements of mm o as follows:

```
mi nf o(2) = # rows in phi, mi nf o( 3) = # col umns in gam
minfo(4) = minfo(5) = 0, minfo(6) = # rows in c, mi nfo(7) = 0.
```

In other words, the default is to assume that all inputs are manipulated variables and all outputs are measured. If you omit minf o, ss 2 mod sets the sampling period to 1 and uses the defaults for the remaining elements.

Example

Suppose you have the situation shown in the above diagram where u, d, w, and y are scalar signals, and the three transfer functions are first-order:

$$
\begin{aligned}
\mathrm{G}_{\mathrm{u}}(\mathrm{z})=\frac{0.7}{1-0.9 \mathrm{z}^{-1}} \quad \mathrm{G}_{\mathrm{d}}(\mathrm{z}) & =\frac{-1.5}{1-0.85 \mathrm{z}^{-1}} \\
\mathrm{G}_{\mathrm{w}}(\mathrm{z}) & =\frac{1}{1+0.6 z^{-1}}
\end{aligned}
$$

The sampling period is $\mathrm{T}=2$.
One way to build the model of the complete system is to convert these to state-space form and use ss 2 mod :
[phi u, gamu, cu, du] =t f 2ss(0.7, [$1-0.9]$);
[phi d, gand, cd, dd] $=t \mathrm{f} 2 \mathrm{ss}(-1.5,[1-0.85])$;

[phi , gam c, d] =mpcpar al (phi u, game, cu, du, phi d, gand, cd, dd) ;
[phi , gam c, d] =mpcpar al (phi , gam c, d, phi w, gamw, cw, dw) ;
del $\mathrm{t}=2$;
minfo=[del t 311110$]$;
prod=ss2nod(phi, gam c, d, minfo)
You must be careful to build up the parallel structure in the correct order. For example, the columns corresponding to Γ_{u} must always come first in Γ.

Another, more fool proof way is to use the addmed and addund functions:
ny=1;
gu=pol y2tfd(0.7,[1-0.9], del t);
gd=pol y2tfd(-1.5, [1-0.85], del t);
gw=pol y2tfd(1,[10.6], delt);
prod $=t \mathrm{f}$ d2nod(del t, ny, gu) ;
prod=addmd(pmod, tf d2mod(del t, ny, gd)) ;
prod=addund(prod, $\mathrm{tfd2mod}($ del $t, n y, ~ g w)$)
Using either approach, the result is:

prod $=$						
2.0000	3.0000	1.0000	1.0000	1.0000	1.0000	0
NaN	0.9000	0	0	1.0000	0	0
0	0	0.8500	0	0	1.0000	0
0	0	0	-0.6000	0	0	1.0000
0	0.7000	-1.5000	1.0000	0	0	0

See Also mod format, mod2ss

Purpose

Syntax

Description

Uses a model in state-space format to calculate the step response of a SISO or MIMO system, in MPC step format.

```
pl ant = ss2step( phi,gam c, d, tfinal )
pl ant = ss2step(phi,gam c, d, tfinal, del t1, del t2, nout)
```

The input variables phi, gam, c, and d are assumed to be a state-space model of a process. The model can be either continuous time:

$$
\begin{aligned}
& \dot{x}(\mathrm{t})=\Phi \mathrm{x}(\mathrm{t})+\Gamma \mathrm{u}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t})
\end{aligned}
$$

or discrete time:

$$
\begin{aligned}
& x(k+1)=\Phi x(k)+\Gamma u(k) \\
& y(k)=C x(k)+D u(k)
\end{aligned}
$$

where x is a vector of n state variables, u is a vector of n_{u} inputs (usually but not necessarily manipulated variables), y is a vector of n_{y} plant outputs, and Φ, Γ, etc., are constant matrices of appropriate size. The ss 2 st ep function calculates the step responses of all the outputs of this process with respect to all the inputs in u, and puts this information into the variable plant in MPC step format. The section for mod2st ep describes the step format in detail.

The input variable tfi nal is the time at which you would like to end the step response calculation, and del t 1 is the sampling period. For continuous systems, use del $\mathrm{t} 1=0$. If you do not specify del t 1 , the default is del $\mathrm{t} 1=0$.

The optional input variable del $t 2$ is the desired sampling period for the step response model. If you use del t $2=[\mathrm{]}$ or omit it, the default is del t $2=\mathrm{del} \mathrm{t} 1$ if delt1 is specified and del t1 neq 0 ; otherwise, the default is del $\mathrm{t} 2=1$.

The optional input variable nout is the output stability indicator. F or stable systems, set nout equal to the number of outputs, n_{y}. F or systems with one or more integrating outputs, nout is a col umn vector of length n_{y} with nout (i) $=0$ indicating an integrating output and nout (i) =1 indicating a stable output. If you use nout $=[\quad]$ or omit it, the default is nout $=n_{y}$ (only stable outputs).

Example

The following process has 3 inputs and 4 outputs (and is the same one used for the example in the mod2st ep section):

```
phi =di ag([0. 3, 0. 7, - 0. 7]);
gamFeye(3);
c={1 0 0; 0 O 1; 0 1 1; 0 1 0];
d=[1 0 0; zeros(3,3)];
```

The following command duplicates the results obtained with mod2st ep:
del t1=1.5; tfinal $=3 * 1.5$;
pl ant =ss2st ep(phi , gam c, d, t final , del t 1)
See Also pl ot step, mod2step, tfd2step

Purpose

Syntax

Description

Example

See Also

Calculates the singular values of a varying matrix, for example, the frequency response generated by mod2frsp.
[si gma, orrega] = svdfrsp(vmat)
vnæt is a varying matrix which contains the sampled values $F\left(\omega_{1}\right), \ldots, F\left(\omega_{N}\right)$ of a matrix function $F(\omega)$.

If the smaller dimension of $F\left(\omega_{\mathrm{i}}\right)$ is m, and if $\sigma_{1}\left(\omega_{\mathrm{i}}\right), \ldots, \sigma_{\mathrm{m}}\left(\omega_{\mathrm{i}}\right)$ are the singular values of $F\left(\omega_{\mathrm{i}}\right)$, in decreasing magnitude, then the output sigma is a matrix of singular values arranged as follows:

$$
\text { sigma }=\left[\begin{array}{cccc}
\sigma_{1}\left(\omega_{1}\right) & \sigma_{2}\left(\omega_{1}\right) & \ldots & \sigma_{m}\left(\omega_{1}\right) \\
\sigma_{1}\left(\omega_{2}\right) & \sigma_{2}\left(\omega_{2}\right) & \ldots & \sigma_{m}\left(\omega_{2}\right) \\
\vdots & \vdots & & \vdots \\
\sigma_{1}\left(\omega_{N}\right) & \sigma_{2}\left(\omega_{N}\right) & \ldots & \sigma_{m}\left(\omega_{N}\right)
\end{array}\right]
$$

The output onega is a column vector containing the frequencies $\omega_{1}, \ldots, \omega_{N}$.
See mod2frsp, varying for mat for an example of the use of this function.
mod2frsp

tfd2mod, tf format

Purpose

tf d 2 mod converts a transfer function (continuous or discrete) from the MPC tf format into the MPC mod format, converting to discrete time if necessary.

Syntax model $=\mathrm{tfd} 2 \bmod \left(\operatorname{del} \mathrm{t} 2, \mathrm{n}_{\mathrm{y}}, \mathrm{g} 1, \mathrm{~g} 2, \mathrm{~g} 3, \ldots, \mathrm{~g} 25\right)$
Description Consider a transfer function such as

$$
G(s)=\frac{b_{0} s^{n}+b_{1} s^{n-1}+\ldots+b_{n}}{a_{0} s^{n}+a_{1} s^{n-1}+\ldots+a_{n}}
$$

or

$$
G(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{n} z^{-n}}{a_{0}+a_{1} z^{-1}+\ldots+a_{n} z^{-n}}
$$

The MPC tf format is a matrix consisting of three rows:
row 1 The n coefficients of the numerator polynomial, b_{0} to b_{n}.
row 2 The n coefficients of the denominator polynomial, a_{0} to a_{n}.
row 3 column 1: The sampling period. This must be zero if the coefficients in the above rows are for a continuous system. It must be positive otherwise.
column 2: The time delay. For a continuous-time transfer function, it is in time units. F or a discrete-time transfer function, it is the integer number of sampling periods of time delay.

The tf matrix will al ways have at least two col umns, since that is the minimum width of the third row.

The input arguments for $t f d 2 \bmod$ are:

tfd2mod, tf format

del $\mathbf{t} 2$

The sampling period for the system. If any of the transfer functions $\mathrm{g} 1, \ldots$, gN are continuous-time or discrete-time with sampling period not equal to del t $2, \mathrm{tf}$ d2mod will convert them to discrete-time with this sampling period.

ny

The number of output variables in the plant you are modeling.

g1, g2, ...gN

A sequence of N transfer functions in the tf format described above, where $\mathrm{N} \geq$ 1. These are assumed to be the individual elements of a transfer-function matrix:

$$
\left[\begin{array}{cccc}
g_{1,1} & g_{1,2} & \ldots & g_{1, n_{u}} \\
g_{2,1} & g_{2,2} & \ldots & g_{2, n_{u}} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n_{y}, 1} & g_{n_{y}, 2} & \ldots & g_{n_{y}, n_{u}}
\end{array}\right]
$$

Thus it should be clear that N must be an integer multiple (n_{u}) of the number of outputs, n_{y}.
Also, tf d 2 mod assumes that you are supplying the transfer functions in a column-wise order. In other words, you should first give the n_{y} transfer functions for input 1 ($g_{1,1}$ to $g_{n y} 1$), then the n_{y} transfer functions for input 2 ($g_{1,2}$ to $g_{n y} 2$), etc.
$t f d 2$ mod converts the transfer functions to discrete-time, if necessary, and combines them to form the output variable, model, which is a compositesystem in the MPC mod form.

Example
Consider the linear system:

$$
\left[\begin{array}{l}
y_{1}(s) \\
y_{2}(s)
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 e^{-s}}{16.7 s+1} & \frac{-18.9 e^{-3 s}}{21.0 s+1} \\
\frac{6.6 e^{-7 s}}{10.9 s+1} & \frac{-19.4 e^{-3 s}}{14.4 s+1}
\end{array}\right]\left[\begin{array}{l}
u_{1}(s) \\
u_{2}(s)
\end{array}\right]+\left[\begin{array}{c}
\frac{3.8 e^{-8 s}}{14.9 s+1} \\
\frac{4.9 e^{-3 s}}{13.2 s+1}
\end{array}\right] w(s)
$$

tfd2mod, tf format

The following commands build separate models of the response to the manipulated variables, u, and the unmeasured disturbance, w, all for a sampling period $\mathrm{T}=3$ then combines them using addurd to get a model of the entire system (the prod variable):

```
g11=pol y2tfd(12. 8,[16.7 1],0, 1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18.9,[21.0 1], 0, 3);
g22=pol y2tfd(-19.4,[14.4 1], 0, 3);
del t=3; ny=2;
unod=t f d2mod( del t, ny, g11, g21, g12, g22) ;
gwl=pol y2tfd(3.8, [14.9 1], 0, 8);
gw2=pol y2tfd(4. 9, [13.2 1], 0, 3);
urod=tf d2nod( del t, ny, gwl, gw2) ;
pmod=addund( unod, unod) ;
```

Restriction \quad The current limit on the number of input transfer functions is $\mathrm{N}=25$.
See Also nod, pol y2tfd, tfd2step

Purpose Calculates the MIMO step response of a model in the MPC tf format. The resulting step response is in the MPC step format.

Description The input variables are as follows:

tfinal

Truncation time for step response.

del $t 2$

Desired sampling period for step response.

nout

Output stability indicator. For stable systems, this argument is set equal to the number of outputs, n_{y} For systems with one or more integrating outputs, this argument is a column vector of length n_{y} with nout (i) $=0$ indi cating an integrating output and nout (i) $=1$ indicating a stable output.

g1, g2, ... gN

A sequence of N transfer functions in the tf format (see tf format section), where $\mathrm{N} \geq 1$. These are assumed to be the individual elements of a transfer-function matrix:

$$
\left[\begin{array}{cccc}
g_{1,1} & g_{1,2} & \ldots & g_{1, n_{u}} \\
g_{2,1} & g_{2,2} & \ldots & g_{2, n_{u}} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n_{y}, 1} & g_{n_{y}, 2} & \ldots & g_{n_{y}, n_{u}}
\end{array}\right]
$$

Thus it should be clear that N must be an integer multiple (n_{u}) of the number of outputs, n_{y}.
t f d2st ep assumes that you are supplying the transfer functions in a column-wise order. In other words, you should first give the n_{y} transfer functions for input 1 ($g_{1,1}$ to $g_{n y} 1$), then the n_{y} transfer functions for input 2 ($g_{1,2}$ to $g_{n,} 2$), etc.

The output variablepl ant is the calculated step response of the n_{y} outputs with respect to all inputs. The format is as described in the step section.

Example Consider the linear system:

$$
\left[\begin{array}{l}
\mathrm{y}_{1}(\mathrm{~s}) \\
\mathrm{y}_{2}(\mathrm{~s})
\end{array}\right]=\left[\begin{array}{cc}
\frac{12.8 \mathrm{e}^{-s}}{16.7 \mathrm{~s}+1} & \frac{-18.9 \mathrm{e}^{-3 \mathrm{~s}}}{21.0 \mathrm{~s}+1} \\
\frac{6.6 \mathrm{e}^{-7 \mathrm{~s}}}{10.9 \mathrm{~s}+1} & \frac{-19.4 \mathrm{e}^{-3 \mathrm{~s}}}{14.4 \mathrm{~s}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{1}(\mathrm{~s}) \\
\mathrm{u}_{2}(\mathrm{~s})
\end{array}\right]
$$

which is the same as that considered in the mposi mexample. We build the individual tf format models, then calculate and plot the MIMO step response.

```
g11=pol y2tfd(12. 8,[16.7 1], 0, 1);
g21=pol y2tfd(6.6,[10.9 1],0,7);
g12=pol y2tfd(-18. 9,[21.0 1], 0, 3);
g22=pol y2tfd(-19.4,[14.4 1], 0, 3);
del t=3; ny=2; tfinal =90;
pl ant =t f d2step(tfi nal, del t, ny, g11, g21, g12, g22, gwl, gw2) ;
pl ot step(pl ant)
```

The plots should match the example output in the pl ot st ep description.
Restriction \quad The current limit on the number of input transfer functions is $\mathrm{N}=25$.
See Also mod2st ep, pl ot step, ss2step

th2mod, theta format

Purpose

Syntax

Description

Converts a SISO or MISO model from the theta format (as used in the System Identification Tool box) to one in the MPC mod format. Can also combine such models to form a MIMO system.
unod $=t h 2 \bmod (t h)$
[unod, enød] $=\mathrm{th} 2 \bmod (\mathrm{th} 1, \mathrm{th} 2, \ldots, \mathrm{thN})$
The System I dentification Tool box allows you to identify single-input, single-output (SISO) and multi-input, single-output (MISO) transfer functions from data. The MISO form relating an output, y, to m inputs, u_{1} to u_{m}, and a noise input, e, is:

$$
A(z) y(k)=\frac{B_{1}(z)}{F_{1}(z)} u_{1}(k)+\frac{B_{2}(z)}{F_{2}(z)} u_{2}(k)+\ldots+\frac{B_{m}(z)}{F_{m}(z)} u_{m}(k)+\frac{C(z)}{D(z)} e(k)
$$

where A, B_{i}, C, D, and F_{i} are polynomials in the forward-shift operator, z.
The System I dentification Tool box automatically stores such models in a special format, the theta format. See the System I dentification Tool box U ser's Guidefor details.
t h2nod converts one or more MISO theta models into the MPC mod format, which you can then use with the MPC Tool box functions. If you supply a single input argument, $t h$, and a single output argument, umod, then unod will model the response of a single output, y, to m inputs, u_{1} to u_{m}, where $m \geq 1$. The value of m depends on the number of inputs included in the input model, t. N ote that unod will reflect the values of the $A(z), B(z)$, and $F(z)$ polynomials in eq. 1 .

If you supply a second output argument, enod, it will model the response of y to the noise, e, i.e., the $A(z), C(z)$ and $D(z)$ polynomials in eq. 1.

If you supply p input models ($1 \leq \mathrm{p} \leq 8$), tf d 2 mod assumes that they define a MIMO system in the following form:

$$
\begin{array}{cc}
A_{1}(z) y_{1}(k) & =\frac{B_{11}(z)}{F_{11}(z)} u_{1}(k)+\ldots+\frac{B_{1 m}(z)}{F_{1 m}(z)} u_{m}(k)+\frac{C_{1}(z)}{D_{1}(z)} e_{1}(k) \\
\vdots & \vdots \\
A_{p}(z) y_{p}(k) & =\frac{B_{p 1}(z)}{F_{p 1}(z)} u_{1}(k)+\ldots+\frac{B_{p m}(z)}{F_{p m}(z)} u_{m}(k)+\frac{C_{p}(z)}{D_{p}(z)} e_{p}(k)
\end{array}
$$

th2mod, theta format

The p output variables have independent noise inputs. In this case, each of the p input models must include the same number of inputs, m. The p outputs are arranged in parallel in the resulting umod output model (and the erod model, if used).

If the h models are auto-regressive (i.e., $\mathrm{m}=0$), then unod will be set to an empty matrix and only enod will be nonempty.

Example

The following commands create three SI SO theta models using the mkt het a command (System I dentification Tool box), then converts them to the equivalent mod form:

```
th1=nkt het a([ 1 0 -. 2],[[0 0-1]);
t h2=mkt het a([ 1 -. 8 . 1],[ 0 -. 5 . 3], 1, 1, 1);
th3=mkt het a([ 1 -. 2],[[0 1],[[1 2 0],[[1 - 1. 2 . 3], 1);
[ umod, emod] =t h2mod( th1, th2, th3)
```

The results are:

1. 0000	5. 0000	1. 0000	0	0	3. 0000	0
NaN	0	0. 2000	0	0	0	1. 0000
0	1. 0000	0	0	0	0	0
0	0	0	0. 8000	-0. 1000	0	1. 0000
0	0	0	1. 0000	0	0	0
0	0	0	0	0	2. 0000	1. 0000
0	0	-1. 0000	0	0	0	0
0	0	0	-0.5000	0. 3000	0	0
0	0	0	0	0	1. 0000	
enod $=$						
Col ums	1 through	7				
1. 0000	7. 0000	3. 0000	0	0	3. 0000	0
NaN	0	0. 2000	0	0	0	0
0	1. 0000	0	0	0	0	0
0	0	0	0. 8000	-0. 1000	0	0
0	0	0	1. 0000	0	0	0
0	0	0	0	0	1. 4000	-0.5400
0	0	0	0	0	1. 0000	0
0	0	0	0	0	0	1. 0000
0	0	0. 2000	0	0	0	0
0	0	0	0. 8000	-0. 1000	0	0
0	0	0	0	0	3. 4000	-0. 5400

enod =
Col ums 1 through 7

Col ums 8 through 11

0	0	0	0
0	1.0000	0	0
0	0	0	0
0	0	1.0000	0
0	0	0	0
0.0600	0	0	1.0000
0	0	0	0
0	0	0	0
0	1.0000	0	0
0	0	1.0000	0
0.0600		0	0

Restriction The System I dentification Tool box must be installed to use this function. See Also nod

validmod

Purpose	Validates an impulse response model for a new set of data.
Syntax	```yres = validmod(xreg, yreg,t het a) yres = validmod(xreg, yreg, thet a, pl ot opt)```
Description	Model validation is a very important part of building a model. F or a new set of data, xr eg and yr eg, the impulse response model is tested by calculating the output residual, yres. thet a consists of impulse response coefficients as determined by routines such as pl sr or ml r .
	Optional input, pl ot opt, can be supplied to produce various plots. No plot is produced if pl ot opt is equal to 0 which is the default; a plot of theactual output and the predicted output is produced if pl ot opt $=1$; two plots - plot of actual and predicted output, and plot of output residual - are produced for pl ot opt $=2$.
Example	See pl sr for an example of the use of this function.
See Also	mir, pl sr

Purpose

Syntax

Description

Writes input and output data matrices for a multi-input single-output system such that they can be used in regression routines $\mathrm{mh} r$ and $\mathrm{pl} s$ for determining impulse response coefficients.
[xreg, yreg] $=\operatorname{wrtreg}(x, y, n)$
x is the input data of dimension N by n_{u} where N is number of data points and n_{u} is number of inputs. y is the output of dimension N by 1 . n is number of impulse response coefficients for all inputs. x is rearranged to produce $x r$ eg of dimension ($\mathrm{N}-\mathrm{n}-1$) by $\mathrm{n} * \mathrm{n}_{\mathrm{u}}$ while yreg is produced by del eting the first n rows of y. This operation is illustrated as follows:

$$
\begin{aligned}
& x=\left[\begin{array}{ccc}
x_{1}(1) & \ldots & x_{n_{u}}(1) \\
x_{1}(2) & \ldots & x_{n_{u}}(2) \\
\vdots & & \vdots \\
x_{1}(N) & \ldots & x_{n_{u}}(N)
\end{array}\right] \\
& y=\left[\begin{array}{c}
y(1) \\
\vdots \\
y(N)
\end{array}\right]
\end{aligned}
$$

then

$$
\begin{aligned}
& \text { xreg }=\left[\begin{array}{ccccccc}
x_{1}(n) & \ldots & x_{1}(1) & \ldots & x_{n_{u}}(n) & \ldots & x_{n_{u}}(1) \\
x_{1}(n+1) & \ldots & x_{1}(2) & \ldots & x_{n_{u}}(n+1) & \ldots & x_{n_{u}}(2) \\
\vdots & & \vdots & & \vdots & & \vdots \\
x_{1}(N-1) & \ldots & x_{1}(N-n) & \ldots & x_{n_{u}} N-(1) & \ldots & x_{n_{u}}(N-n)
\end{array}\right] \\
& \operatorname{yreg}=\left[\begin{array}{c}
y(n+1) \\
\vdots \\
y(N)
\end{array}\right]
\end{aligned}
$$

A single sampling delay is assumed for all inputs. y must be a column vector, i.e., only one output can be specified.
Example \quad See $\mathrm{ml} r$ and $\mathrm{pl} s \mathrm{f}$ for examples of the use of this function.
See Also $\quad \mathrm{mlr}, \mathrm{pl} \mathrm{sr}$

1-152

A

abcdchk 4-6
abcdchkm4-6
addnd 4-4, 4-9, 4-149
addnod 4-4, 4-10
addurd 4-4, 4-11, 4-131, 4-149, 4-155
append 4-13
approd 4-4, 4-13
associated variable 2-36
aut osc 2-7, 2-8, 4-2, 4-14, 4-31

B

balance 4-38
bilinear 3-26
blocking 3-15, 4-60
blocking factor 3-15, 4-76, 4-109
Bode pl ot 4-97
bound, see constraint
output 4-120
bound, see constraint
manipulated variable 4-97, 4-107, 4-108, 4-110, 4-112
output 4-113, 4-117, 4-120, 4-123, 4-125, 4-128

C

c2d 4-3
c2dmp 4-3, 4-24, 4-89
closed-loop
model in nod format 4-107
system model 4-56
cmpc 2-21, 2-24, 2-29, 4-4, 4-15
complementary sensitivity function 2-18, 4-39
constraint, see bound 2-20, 2-22, 3-12, 3-20
hard 2-20
continuous 3-9
controller gain 4-59, 4-66, 4-81, 4-137
for model in mod format 4-124
covariance 4-25
covariance matrix 4-129
cp2dp 4-3, 4-24

D

d2c 4-3
d2cmp 4-3
dant zgmp 4-6, 4-15, 4-107, 4-126
dar ei ter 4-6, 4-27
demo file 1-3
di mpul se 4-6
di moul sm4-6
discrete 3-9
disturbance
measured 3-10, 3-17, 3-26, 3-33, 4-35
time constant 4-17, 4-66, 4-75, 4-79
unmeasured 3-13, 3-17, 3-20, 3-23, 4-35
disturbance model 4-128, 4-129
disturbance time constant 2-12, 4-131
dl qe2 4-6, 4-25-4-28, 4-133
dl si mm4-6, 4-119
DMC estimator 4-132, 4-133
DMC, 1, sedynamic matrix control 2-12, 3-18, 3-20, 4-60, 4-76, 4-109, 4-125
dynamic matrix control, 1, se DM C 2-12

E

estimator 4-70
estimator gain 4-112, 4-120, 4-129, 4-130, 4-141
for models in nod format 4-128

F

fcc_deno. m2-34
feedforward compensation 4-9
feedforward control 3-33
filter 4-25
fluid catalytic cracking 2-31-2-38
forward-shift operator 3-6
frequency resoponse 2-18
frequency response 4-38, 4-41
plot 4-97

G

gain matrix
for model in nod format 4-135

H

Hessenberg matrix 4-41
horizon 2-11, 2-12
control 3-20, 3-30
moving 2-11
prediction 3-22, 3-30
reciding 2-11

I

IDCOM 1-2
identification 2-6
idle speed control 2-22-2-30
i dl ect r . m2-24
i mp2st ep 4-2, 4-29, 4-102
impulse response coefficient 2-6, 4-29
infeasibility 3-23
initial condition 4-79
input horizon 4-60, 4-78, 4-109, 4-125
integrating process 2-7, 2-34
integrating processes 2-2
inverse response 3-29

L

least squares regression 4-30
linear quadratic optimal control 1-2

M

manipulated variable
bound 4-18, 4-68
rate limit 4-68, 4-84, 4-140
saturation limit 4-68, 4-82, 4-140
matrix type 4-63
mean 4-14
measurement noise 2-13, 4-15, 4-25, 4-35, 4-51
minfo o 3-29, 4-44, 4-147
min nf o vector 4-37
mkt het a 4-159
nh r 4-2, 4-14, 4-30, 4-35, 4-37, 4-162, 4-163
nod format 4-35, 4-38, 4-63, 4-107
from discrete-time state-space model 4-146
from model in $t \mathrm{f}$ format 4-153
from model in theta format 4-158
matrix type infomation 4-63
nod2f rsp 2-18, 3-12, 4-5, 4-38-??, 4-63, 4-152
varying for mat 4-38
nod2mod 4-3, 4-42
nod2ss 3-10, 4-3, 4-10, 4-28, 4-43, 4-43-??
nod2step 3-29, 4-3, 4-47-??, 4-90
step format 4-47
model algorithmic control 1-2
model-inverse controller 4-60, 4-125
npcaugss 4-6, 4-51, 4-51-4-53, 4-133
npccl 4-4, 4-54, 4-54-4-58, 4-61
mpccon 2-13, 2-15, 2-29, 2-36, 4-4, 4-54, 4-57, 4-59, 4-59-4-62
mpci nf o 4-2, 4-37, 4-63
mpcpar al 4-6, 4-9, 4-11, 4-92, 4-148
mpcsi m2-14, 2-29, 2-36, 4-4, 4-65
mpcst ai r 4-6
mpot ut. m2-3
mpct ut i d 2-7
mpct ut ss. m3-12, 3-20

N

nar gchk 4-6
nar gchkm4-6
nl стрс 4-4, 4-74, 4-74-??
nl mpcdm1. m4-86
nl mpcl i b 4-74, 4-81
nl mpcsi m4-4, 4-81
noise filter
time constant 2-12, 4-19, 4-69, 4-79, 4-85
noise model 4-128
nonlinear plant 4-74

0

operating conditions
drive positions 2-22
transmission in neutral 2-22
output
bound 4-19, 4-78, 4-107, 4-108
measured 2-11, 4-25, 4-36, 4-43
unmeasured 2-12, 4-36
output stability indicator 4-29, 4-47, 4-151, 4-156

P

pap_rıch. m3-37, 4-88
paper machine headbox control 3-26
par anod 3-10, 4-4, 4-9, 4-92
par part 4-78
partial least squares 4-100
perfect controller 3-13, 4-60, 4-125
pl ot al I 2-14, 2-15, 3-12, 4-2, 4-93
pl ot each 3-12, 4-2, 4-93, 4-95
pl ot frsp 2-18, 3-12, 4-2, 4-97
pl ot st ep 2-4, 2-9, 4-2, 4-98
PLS 4-100
pl s 4-163
pl sr 2-7, 4-2, 4-100, 4-162
pml in. m3-27
pm nonl. m3-37
pole
for model in nod format 2-18, 4-135
pol y format
conversion to tf format 4-104
pol y2t fd 2-3, 2-13, 3-6, 3-7, 3-13, 3-20, 4-3, 4-21, 4-28, 4-57, 4-104, 4-121, 4-131, 4-142, 4-155, 4-157
prediction horizon 4-59, 4-75, 4-108, 4-125
predictor 4-27

Q

QP 4-21, 4-79, 4-114
quadratic program 4-6, 4-15, 4-107, 4-126

R

ramp 2-13
rate limit 4-68, 4-82, 4-138
reference value 2-11
regression 4-163
least squares 4-30
partial least squares 4-100
ridge 4-30
rescal 4-2, 4-14
ridge regression 4-30
ringing 3-14
robust 2-22
robustness 2-12

S

sampling period
change in mod format 4-42
saturation constraint 4-65, 4-136
saturation limit 4-68, 4-84, 4-138
scal 2-9, 4-2, 4-14, 4-31
scaling 4-14
scmpc 3-21, 3-24, 3-30, 3-31, 3-32, 3-34, 4-5, 4-107, 4-140
scmpenl 3-37
sensitivity function 2-18, 4-41
ser mod 3-10, 4-4, 4-117
setpoint 2-11
signal-to-noise ratio 3-37, 4-130
Simulink 1-3, 3-37, 4-4, 4-81, 4-85, 4-88, 4-89
singular value 2-18, 4-41
of varying matirix 4-152
smpcal 3-12, 3-14, 4-5, 4-118, 4-126
smpccon 3-12, 3-13, 4-5, 4-108, 4-118, 4-124, 4-129, 4-131, 4-134, 4-137, 4-142
smpcest 3-12, 3-18, 4-5, 4-119, 4-128, 4-141
smpcgai n 3-12, 4-5, 4-135
smpcpol e 3-12, 4-5, 4-121, 4-135
smpcsi m3-12, 3-14, 3-16, 3-18, 3-21, 4-5, 4-113
ss2mod 3-9, 3-29, 4-37, 4-146
ss2moda 4-3
ss2st ep 2-5, 4-3, 4-150
ss2tf 3-11, 4-3
ss2tf 2 4-3
stability 2-12
stability analysis 4-54
stairstep 4-6, 4-93, 4-95
standard deviation 4-14
state estimation 4-15, 4-126
state estimator 3-35, 4-25
state space 2-18, 4-25
st ep format 4-15, 4-17, 4-29, 4-47-??, 4-55, 4-65
matrix type information 4-63
step response
from mod format 4-47
from state-space model 4-150
from $t f$ format 4-156
plot 4-98
step response coefficient 2-2
step response model 2-2
svdf rsp 3-12, 4-5, 4-152
System Identification Tool box 3-9, 4-158
system requirement 1-3

T

tf format 4-153
tf 2ss 2-5, 4-3
tf $2 \mathrm{ssm} 4-3$
tf d2mod 3-4, 3-5, 3-6, 3-7, 3-13, 3-20, 4-3, 4-28, 4-121, 4-142, 4-153, 4-153, 4-159
tf d2st ep 2-4, 2-13, 2-24, 4-3, 4-21, 4-57, 4-156
th2mod 3-9, 4-3, 4-9
thet a 4-158
thet a format 3-9, 4-158
time constant
noise filter 4-19, 4-79
unmeasured disturbance 4-69, 4-85, 4-90, 4-113, 4-123
tutorial 1-3

U

usage display 1-3

V

validation 4-162
val i dmod 4-2, 4-101, 4-162
varying format
matrix type information 4-63, 4-97
varying matrix 4-152
vec 2 mat 4-6

W

weight 4-16, 4-59, 4-75, 4-108, 4-124
time varying 4-61, 4-126
weighting matrix 2-11, 2-12
white noise 4-25, 4-130
wrtreg 2-7, 2-8, 4-2, 4-163

[^0]: 4. A detailed problem description and the model used for this study can be found in the paper by McFarlane et al., "Dynamic Simulator for a M odel IV Fluid Catalytic Cracking Unit," Comp. \& Chem. Eng., 17(3), 1993, pages 275-300
[^1]: th1 is the theta model describing the response of output y_{1} to inputs u_{1} and u_{2}.
 th2 is the theta model describing the response of output y_{2} to inputs u_{1} and u_{2}.

[^2]: 5. Gattu, G. and E. Zafiriou, "Nonlinear Quadratic Dynamic Matrix Control with State Estimation," Ind. Eng. Chem. Research, 1992, 31, 1096-1104.
[^3]: See Also pl otstep, ss2step, tf d2step

[^4]: pl ot al I, pl ot each, smpccl, smpccon, smpcest, smpcsi m

